首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A two‐stage design is cost‐effective for genome‐wide association studies (GWAS) testing hundreds of thousands of single nucleotide polymorphisms (SNPs). In this design, each SNP is genotyped in stage 1 using a fraction of case–control samples. Top‐ranked SNPs are selected and genotyped in stage 2 using additional samples. A joint analysis, combining statistics from both stages, is applied in the second stage. Follow‐up studies can be regarded as a two‐stage design. Once some potential SNPs are identified, independent samples are further genotyped and analyzed separately or jointly with previous data to confirm the findings. When the underlying genetic model is known, an asymptotically optimal trend test (TT) can be used at each analysis. In practice, however, genetic models for SNPs with true associations are usually unknown. In this case, the existing methods for analysis of the two‐stage design and follow‐up studies are not robust across different genetic models. We propose a simple robust procedure with genetic model selection to the two‐stage GWAS. Our results show that, if the optimal TT has about 80% power when the genetic model is known, then the existing methods for analysis of the two‐stage design have minimum powers about 20% across the four common genetic models (when the true model is unknown), while our robust procedure has minimum powers about 70% across the same genetic models. The results can be also applied to follow‐up and replication studies with a joint analysis.  相似文献   

3.
4.
5.
Recent genome‐wide association (GWA) studies have identified a number of novel genes/variants predisposing to obesity. However, most GWA studies have focused on individual single‐nucleotide polymorphism (SNPs)/genes with a strong statistical association with a phenotypic trait without considering potential biological interplay of the tested genes. In this study, we performed biological pathway‐based GWA analysis for BMI and body fat mass. We used individual level genotype data generated from 1,000 unrelated US whites that were genotyped for ~500,000 SNPs. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm. A total of 963 pathways extracted from the BioCarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), Ambion GeneAssist, and Gene Ontology (GO) databases were analyzed. Among all of the pathways analyzed, the vasoactive intestinal peptide (VIP) pathway was most strongly associated with fat mass (nominal P = 0.0009) and was the third most strongly associated pathway with BMI (nominal P = 0.0006). After multiple testing correction, the VIP pathway achieved false‐discovery rate (FDR) q values of 0.042 and 0.120 for fat mass and BMI, respectively. Our study is the first to demonstrate that the VIP pathway may play an important role in development of obesity. The study also highlights the importance of pathway‐based GWA analysis in identification of additional genes/variants for complex human diseases.  相似文献   

6.
7.
8.
9.
As major risk‐factors for diabetes and cardiovascular diseases, the genetic contribution to obesity‐related traits has been of interest for decades. Recently, a limited number of common genetic variants, which have replicated in different populations, have been identified. One approach to increase the statistical power in genetic mapping studies is to focus on populations with increased levels of linkage disequilibrium (LD) and reduced genetic diversity. We have performed joint linkage and genome‐wide association analyses for weight and BMI in 3,448 (linkage) and 3,925 (association) partly overlapping healthy individuals from five European populations. A total of four chromosomal regions (two for weight and two for BMI) showed suggestive linkage (lod >2.69) either in one of the populations or in the joint data. At the genome‐wide level (nominal P < 1.6 × 10?7, Bonferroni‐adjusted P < 0.05) one single‐nucleotide polymorphism (SNP) (rs12517906) (nominal P = 7.3 × 10?8) was associated with weight, whereas none with BMI. The SNP associated with weight is located close to MGAT1. The monoacylglycerol acyltransferase (MGAT) enzyme family is known to be involved in dietary fat absorption. There was no overlap between the linkage regions and the associated SNPs. Our results show that genetic effects influencing weight and BMI are shared across diverse European populations, even though some of these populations have experienced recent population bottlenecks and/or been affected by genetic drift. The analysis enabled us to identify a new candidate gene, MGAT1, associated with weight in women.  相似文献   

10.
11.
Phosphoryl-transfer reactions have long been of interest due to their importance in maintaining numerous cellular functions. A phosphoryl-transfer reaction results in two possible stereochemical outcomes: either retention or inversion of configuration at the transferred phosphorus atom. When the product is phosphate, isotopically-labeled [16O, 17O, 18O]-phosphate derivatives can be used to distinguish these outcomes; one oxygen must be replaced by sulfur or esterified to achieve isotopic chirality. Conventionally, stereochemical analysis of isotopically chiral phosphate has been based on 31P NMR spectroscopy and involves complex chemical or enzymatic transformations. An attractive alternative would be direct determination of the enantiomeric excess using chiroptical spectroscopy. (S)-Methyl-[16O, 17O, 18O]-phosphate (MePi), 7 and enantiomeric [16O, 17O, 18O]-thiophosphate (TPi), 10, were previously reported to exhibit weak electronic circular dichroism (ECD), although with 10 the result was considered to be uncertain. We have now re-examined the possibility that excesses of 7 and 10 enantiomers can be detected by ECD spectrometry, using both experimental and theoretical approaches. 7 and both the (R) and (S) enantiomers of 10 (10a10b) were synthesized by the ‘Oxford route’ and characterized by 1H, 31P and 17O NMR, and by MS analysis. Weak ECD could be found for 7, with suboptimal S/N. No significant ECD could be detected for the 10 enantiomers.Time-dependent DFT (TDDFT) calculations of the electronic excitation energies and rotational strengths of the same three enantiomers were carried out using the functional B3LYP and the basis set 6-311G∗∗. The isotopically-perturbed geometries were predicted using the anharmonic vibrational frequency calculational code in GAUSSIAN 03. In the case of 10, calculations were also carried out for the hexahydrated complex to investigate the influence of the aqueous solvent. The predicted excitation wavelengths are greater than the observed wavelengths, a not unusual result of TDDFT calculations. The predicted anisotropy ratios are 2.9 × 10−5 for 7, −5.3 × 10−6 for 10a/b, and 1.7 × 10−6 for 10a/b⋅(H2O)6. For 7 the predicted anisotropy ratio approximates that observed in this work, 4.5 × 10−5 at 208 nm. For 10a/b, the upper limits of the experimental anisotropy ratios (<5 × 10−6 at 225 nm, pH 9; <5 × 10−6 at 236 nm, pH 12) are comparable to the predicted magnitude of the value for 10a/b. The lower predicted value for 10a/b · (H2O)6 suggests that the aqueous environment affects the ECD significantly. Altogether, the TDDFT calculations together with a stereochemical analysis based on NMR and the MS data support the conclusion that the experimental ECD results for MePi and TPi may be reliable in order of magnitude.  相似文献   

12.
We investigated candidate genomic regions associated with computed tomography (CT)–derived measures of adiposity in Hispanics from the Insulin Resistance Atherosclerosis Study Family Study (IRASFS). In 1,190 Hispanic individuals from 92 families 3 from the San Luis Valley, Colorado and San Antonio, Texas, we measured CT‐derived visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and visceral:subcutaneous ratio (VSR). A genome‐wide association study (GWAS) was completed using the Illumina HumanHap 300 BeadChip (~317K single‐nucleotide polymorphisms (SNPs)) in 229 individuals from the San Antonio site (stage 1). In total, 297 SNPs with evidence for association with VAT, SAT, or VSR, adjusting for age and sex (P < 0.001), were genotyped in the remaining 961 Hispanic samples. The entire Hispanic cohort (n = 1,190) was then tested for association, adjusting for age, sex, site of recruitment, and admixture estimates (stage 2). In stage 3, additional SNPs were genotyped in four genic regions showing evidence of association in stage 2. Several SNPs were associated in the GWAS (P < 1 × 10?5) and were confirmed to be significantly associated in the entire Hispanic cohort (P < 0.01), including: rs7543757 for VAT, rs4754373 and rs11212913 for SAT, and rs4541696 and rs4134351 for VSR. Numerous SNPs were associated with multiple adiposity phenotypes. Targeted analysis of four genes whose SNPs were significant in stage 2 suggests candidate genes for influencing the distribution (RGS6) and amount of adiposity (NGEF). Several candidate loci, including RGS6 and NGEF, are associated with CT‐derived adipose fat measures in Hispanic Americans in a three‐stage genetic association study.  相似文献   

13.
14.
15.
16.
17.
18.
Summary In genome‐wide association (GWA) studies, test statistics that are efficient and robust across various genetic models are preferable, particularly for studying multiple diseases in the Wellcome Trust Case–Control Consortium ( WTCCC, 2007 , Nature 447 , 661–678). A new test statistic, the minimum of the p‐values of the trend test and Pearson's test, was considered by the WTCCC. It is referred to here as MIN2. Because the minimum of two p‐values is no longer a valid p‐value itself, the WTCCC only used it to rank single nucleotide polymorphisms (SNPs) but did not report the p‐values of the associated SNPs when MIN2 was used for ranking. Given its importance in practice, we derive the asymptotic null distribution of MIN2, study some of its analytical properties related to GWA studies, and compare it with existing methods (the trend test, Pearson's test, MAX3, and the constrained likelihood ratio test [CLRT]) by simulations across a wide range of possible genetic models: the recessive (REC), additive (ADD), multiplicative (MUL), dominant (DOM), and overdominant models. The results show that MAX3 and CLRT have greater efficiency robustness than other tests when the REC, ADD/MUL, and DOM models are possible, whereas Pearson's test and MIN2 have greater efficiency robustness if the possible genetic models also include the overdominant model. We conclude that robust tests (MAX3, MIN2, CLRT, and Pearson's test) are preferable to a single trend test for initial GWA studies. The four robust tests are applied to more than 100 SNPs associated with 11 common diseases identified by the two WTCCC GWA studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号