首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation. Urokinase plasminogen activator (uPA) binds a specific high affinity surface receptor (uPAR). The uPA-uPAR system is crucial for cell adhesion and migration, and tissue repair. We have investigated the presence and function of the uPA-uPAR system in human basophils. The expression of uPAR was found at both mRNA and protein levels. The receptor was expressed on the cell surface of basophils, in the intact and cleaved forms. Basophils did not express uPA at either the protein or mRNA level. uPA (10(-12)-10(-9) M) and its uPAR-binding N-terminal fragment (ATF) were potent chemoattractants for basophils, but did not induce histamine or cytokine release. Inactivation of uPA enzymatic activity by di-isopropyl fluorophosphate did not affect its chemotactic activity. A polyclonal Ab against uPAR inhibited uPA-dependent basophil chemotaxis. The uPAR-derived peptide 84-95 (uPAR84-95) induced basophil chemotaxis. Basophils expressed mRNA for the formyl peptide receptors formyl peptide receptor (FPR), FPR-like 1 (FPRL1), and FPRL2. The FPR antagonist cyclosporin H prevented chemotaxis induced by FMLP, but not that induced by uPA and uPAR84-95. Incubation of basophils with low and high concentrations of FMLP, which desensitize FPR and FPRL1, respectively, but not FPRL2, slightly reduced the chemotactic response to uPA and uPAR84-95. In contrast, desensitization with WKYMVm, which also binds FPRL2, markedly inhibited the response to both molecules. Thus, uPA is a potent chemoattractant for basophils that seems to act through exposure of the chemotactic uPAR epitope uPAR84-95, which is an endogenous ligand for FPRL2 and FPRL1.  相似文献   

2.
We evaluated the effects of synthetic peptides (2017, 2019, 2020, 2021, 2023, 2027, 2029, 2030, 2031, and 2035) encompassing the structure of HIV-1(MN) envelope gp41 on both chemotaxis of human basophils and the release of preformed mediators (histamine) and of cytokines (IL-13). Peptides 2019 and 2021 were potent basophil chemoattractants, whereas the other peptides examined were ineffective. Preincubation of basophils with FMLP or gp41 2019 resulted in complete desensitization to a subsequent challenge with homologous stimulus. Incubation of basophils with low concentration (5 x 10(-7) M) of FMLP, which binds with high affinity to N-formyl peptide receptor (FPR), but not to FPR-like 1, did not affect the chemotactic response to a heterologous stimulus (gp41 2019). In contrast, a high concentration (10(-4) M) of FMLP, which binds also to FPR-like 1, significantly reduced the chemotactic response to gp41 2019. The FPR antagonist cyclosporin H inhibited chemotaxis induced by FMLP, but not by gp41 2019. None of these peptides singly induced the release of histamine or cytokines (IL-4 and IL-13) from basophils. However, low concentrations of peptides 2019 and 2021 (10(-8)-10(-6) M) inhibited histamine release from basophils challenged with FMLP but not the secretion caused by anti-IgE and gp120. Preincubation of basophils with peptides 2019 and 2021 inhibited the expression of both IL-13 mRNA, and the FMLP-induced release of IL-13 from basophils. These data highlight the complexity of the interactions between viral and bacterial peptides with FPR subtypes on human basophils.  相似文献   

3.
Neutrophils express the G protein-coupled N-formyl peptide receptor (FPR) and its homologue FPRL1, whereas monocytes express FPR, FPRL1, and FPRL2, an orphan receptor sharing 83% amino acid identity with FPRL1. FPRL1 is a promiscuous receptor activated by serum amyloid A and by different synthetic peptides, including the hexapeptide Trp-Lys-Tyr-Met-Val-d-Met-NH(2) (WKYMVm). By measuring calcium flux in HL-60 cells transfected with FPR, FPRL1, or FPRL2, we show that WKYMVm activated all three receptors, whereas the l-conformer WKYMVM activated exclusively FPRL1 and FPRL2. The functionality of FPRL2 was further assessed by the ability of HL-60-FPRL2 cells to migrate toward nanomolar concentrations of hexapeptides. The half-maximal effective concentrations of WKYMVM for calcium mobilization in HL-60-FPRL1 and HL-60-FPRL2 cells were 2 and 80 nm, respectively. Those of WKYMVm were 75 pm and 3 nm. The tritiated peptide WK[3,5-(3)H(2)]YMVM bound to FPRL1 (K(D) approximately 160 nm), but not to FPR. The two conformers similarly inhibited binding of (125)I-labeled WKYMVm to FPRL2-expressing cells (IC(50) approximately 2.5-3 micrometer). Metabolic labeling with orthophosphoric acid revealed that FPRL1 was differentially phosphorylated upon addition of the l- or d-conformer, indicating that it induced different conformational changes. In contrast to FPRL1, FPRL2 was already phosphorylated in the absence of agonist and not evenly distributed in the plasma membrane of unstimulated cells. However, both receptors were internalized upon addition of either of the two conformers. Taken together, the results indicate that neutrophils are activated by WKYMVM through FPRL1 and that FPRL2 is a chemotactic receptor transducing signals in myeloid cells.  相似文献   

4.
Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived molecules. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. In the present study we identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1's agonists (Trp-Lys-Tyr-Met-Val-D-Met-CONH(2) (WKYMVm)) to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-Trp-CONH(2) (WRWWWW (WRW(4))) showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. We also found that WRW(4) inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW(4) to the FPR family, we observed that WRW(4) specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid beta42 (Abeta42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW(4) on endogenous FPRL1 ligand-induced cellular responses, we examined its effect on Abeta42 peptide in human neutrophils. Abeta42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW(4), which also completely inhibited the internalization of Abeta42 peptide in human macrophages. WRW(4) is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.  相似文献   

5.
F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.  相似文献   

6.
The human N-formyl peptide receptor (FPR) is a key modulator of chemotaxis directing granulocytes toward sites of bacterial infections. FPR is the founding member of a subfamily of G protein-coupled receptors thought to function in inflammatory processes. The other two members, FPR-like (FPRL)1 and FPRL2, have a greatly reduced affinity for bacterial peptides or do not bind them at all, with FPRL2 being considered an orphan receptor so far. In this study we show that a peptide derived from the N-terminal domain of the anti-inflammatory protein annexin 1 (lipocortin 1) can activate all three FPR family members at similar concentrations. The annexin 1 peptide initiates chemotactic responses in human monocytes that express all three FPR family members and also desensitizes the cells toward subsequent stimulation with bacterial peptide agonists. Experiments using HEK 293 cells stably expressing a single FPR family member reveal that all three receptors can be activated and desensitized by the N-terminal annexin 1 peptide. These observations identify the annexin 1 peptide as the first endogenous ligand of FPRL2 and indicate that annexin 1 participates in regulating leukocyte emigration into inflamed tissue by activating and desensitizing different receptors of the FPR family.  相似文献   

7.
We have recently identified a peptide derived from the secreted portion of the HSV-2 glycoprotein G, gG-2p20, to be proinflammatory. Based on its ability to activate neutrophils and monocytes via the formyl peptide receptor (FPR) to produce reactive oxygen species (ROS) that down-regulate NK cell function, we suggested it to be of importance in HSV-2 pathogenesis. We now describe the effects of an overlapping peptide, gG-2p19, derived from the same HSV-2 protein. Also, this peptide activated the ROS-generating NADPH-oxidase, however, only in monocytes and not in neutrophils. Surprisingly, gG-2p19 did not induce a chemotactic response in the affected monocytes despite using a pertussis toxin-sensitive, supposedly G-protein-coupled receptor. The specificity for monocytes suggested that FPR and its homologue FPR like-1 (FPRL1) did not function as receptors for gG-2p19, and this was also experimentally confirmed. Surprisingly, the monocyte-specific FPR homologue FPRL2 was not involved either, and the responsible receptor thus remains unknown so far. However, the receptor shares some basic signaling properties with FPRL1 in that the gG-2p19-induced response was inhibited by PBP10, a peptide that has earlier been shown to selectively inhibit FPRL1-triggered responses. We conclude that secretion and subsequent degradation of the HSV-2 glycoprotein G can generate several peptides that activate phagocytes through different receptors, and with different cellular specificities, to generate ROS with immunomodulatory properties.  相似文献   

8.
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]  相似文献   

9.
T-20, a synthetic peptide corresponding to the heptad repeat sequence of HIV-1 gp41, blocks HIV-1 entry by targeting gp41, and is currently in clinical trials as an anti-retroviral agent. We recently reported that in vitro T-20 also functions as a phagocyte chemoattractant and a chemotactic agonist at the phagocyte N-formylpeptide receptor (FPR). Here we show that T-20 is also a potent chemotactic agonist in vitro at a related human phagocyte receptor FPRL1R. To test the relative importance of FPR and FPRL1R in primary cells, we identified the corresponding mouse T-20 receptors, mFPR and FPR2, which are both expressed in neutrophils, and compared T-20 action on neutrophils from wild type and mFPR knockout mice. Surprisingly, although T-20 activates mFPR and FPR2 in transfected cells with equal potency and efficacy in both calcium flux and chemotaxis assays, neutrophils from mFPR knockout mice did not respond to T-20. These results provide genetic evidence that FPR is the major phagocyte T-20 receptor in vivo and point to the potential feasibility of studying T-20 effects on immunity in a mouse model. This may help define the cause of local inflammation after T-20 injection that has recently been reported in Phase I clinical trials.  相似文献   

10.
A leucine zipper-like domain, T21/DP107, located in the amino terminus of the ectodomain of gp41, is crucial to the formation of fusogenic configuration of the HIV-1 envelope protein gp41. We report that the synthetic T21/DP107 segment is a potent stimulant of migration and calcium mobilization in human monocytes and neutrophils. The activity of T21/DP107 on phagocytes was pertussis toxin-sensitive, suggesting this peptide uses Gi-coupled seven-transmembrane receptor(s). Since the bacterial chemotactic peptide fMLP partially desensitized the calcium-mobilizing activity of T21/DP107 in phagocytes, we postulated that T21/DP107 might preferentially use a lower affinity fMLP receptor. By using cells transfected to express cloned prototype chemotactic N-formyl peptide receptor (FPR) or its variant, FPR-like 1 (FPRL1), we demonstrate that T21/DP107 activates both receptors but has a much higher efficacy for FPRL1. In addition, T21/DP107 at nM concentrations induced migration of FPRL1-transfected human embryonic kidney 293 cells. In contrast, fMLP did not induce significant chemotaxis of the same cells at a concentration as high as 50 microM. Although a lipid metabolite, lipoxin A4, was a high-affinity ligand for FPRL1, it was not reported to induce Ca2+ mobilization or chemotaxis in FPRL1-transfected cells. Therefore, T21/DP107 is a first chemotactic peptide agonist identified thus far for FPRL1. Our results suggest that this peptide domain of the HIV-1 gp41 may have the potential to activate host innate immune response by interacting with FPR and FPRL1 on phagocytes.  相似文献   

11.
Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial chemotactic peptide fMLP, suggesting that WKYMVm might use receptor(s) for fMLP. This hypothesis was tested by using cells over expressing genes encoding two seven-transmembrane receptors, formyl peptide receptor (FPR) and formyl peptide receptor-like 1 (FPRL1), which are with high and low affinity for fMLP, respectively. Both FPR- and FPRL1-expressing cells mobilized calcium in response to picomolar concentrations of WKYMVm. While FPRL1-expressing cells migrated to picomolar concentrations of WKYMVm, nanomolar concentrations of the peptide were required to induce migration of FPR-expressing cells. In contrast, fMLP elicited both calcium flux and chemotaxis only in FPR-expressing cells with an efficacy comparable with WKYMVm. Thus, WKYMVm uses both FPR and FPRL1 to stimulate phagocytes with a markedly higher efficacy for FPRL1. Our study suggests that FPR and FPRL1 in phagocytes react to a broad spectrum of agonists and WKYMVm as a remarkably potent agonist provides a valuable tool for studying leukocyte signaling via these receptors.  相似文献   

12.
Lee SY  Lee MS  Lee HY  Kim SD  Shim JW  Jo SH  Lee JW  Kim JY  Choi YW  Baek SH  Ryu SH  Bae YS 《FEBS letters》2008,582(2):273-278
F2L, a peptide derived from heme-binding protein, was originally identified as an endogenous ligand for formyl peptide receptor-like (FPRL)2. Previously, we reported that F2L inhibits FPR and FPRL1-mediated signaling in neutrophils. Since endothelial cells express functional FPRL1, we examined the effect of F2L on LL-37 (an FPRL1 agonist)-induced signaling in human umbilical vein endothelial cells (HUVECs). F2L stimulated the chemotactic migration in HUVECs. However, F2L inhibited FPRL1 activity, resulting in the inhibition of cell proliferation and tube formation induced by LL-37 in HUVECs. We suggest that F2L will potentially be useful in the study of FPRL1 signaling and the development of drugs to treat diseases involving the FPRL1 in the vascular system.  相似文献   

13.
Rabiet MJ  Huet E  Boulay F 《Biochimie》2007,89(9):1089-1106
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.  相似文献   

14.
15.
Cyclooxygenase (COX)-2 expression is induced in the gastric mucosa of Helicobacter pylori-infected patients, but its role remains unclear. We examined the effects of NS-398 and indomethacin on gastric pathology in H. pylori-infected Mongolian gerbils. COX-1 was detected in both normal and H. pylori-infected mucosa, whereas COX-2 was expressed only in the infected mucosa. PGE(2) production was elevated by H. pylori infection, and the increased production was reduced by NS-398, which did not affect PGE(2) production in normal mucosa. Indomethacin inhibited PGE(2) production in both normal and infected mucosa. Hemorrhagic erosions, neutrophil infiltration, lymphoid follicles, and epithelium damage were induced by H. pylori infection. NS-398 and indomethacin aggravated these pathological changes but did not increase viable H. pylori number. H. pylori-increased production of neutrophil chemokine and interferon-gamma was potentiated by NS-398 and indomethacin. Neither NS-398 nor indomethacin caused any pathological changes or cytokine production in normal animals. These results indicate that COX-2 as well as COX-1 might play anti-inflammatory roles in H. pylori-induced gastritis.  相似文献   

16.
17.
Although formyl peptide receptor like 2 (FPRL2) has been regarded as an important classical chemoattractant receptor, its functional role and signaling pathway have not been fully investigated, because of the lack of its specific ligand. Recently F2L, a heme-binding protein fragment peptide, has been reported as an FPRL2-selective endogenous agonist. In the present study, we examined the effect of Trp-Arg-Trp-Trp-Trp-Trp-CONH2 (WRWWWW, WRW4), on F2L-induced cell signaling. WRW4 inhibited the activation of FPRL2 by F2L, resulting in the complete inhibition of intracellular calcium increase and chemotactic migration induced by F2L. WRW4 also completely inhibited F2L-induced NF-kappaB activation in FPRL2-transfected HEK293 cells. WRW4 specifically inhibited F2L-induced intracellular calcium increase and chemotactic migration in mature monocyte-derived dendritic cells, which express FPRL2 but not the other FPR family. Taken together, WRW4 is the first FPRL2 antagonist and is expected to be useful in the study of FPRL2 signaling and in development of drugs against FPRL2-related cellular responses.  相似文献   

18.
Although the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the regulation of several immune responses, its target receptors and signaling mechanisms have yet to be fully elucidated in immune cells. In this study, we found that PACAP27, but not PACAP38, specifically stimulated intracellular calcium mobilization and ERK phosphorylation in human neutrophils. Moreover, formyl peptide receptor-like 1 (FPRL1) was identified as a PACAP27 receptor, and PACAP27 was found to selectively stimulate intracellular calcium increase in FPRL1-transfected rat basophil leukocytes-2H3 cell lines. In addition, PACAP27-induced calcium increase and ERK phosphorylation were specifically inhibited by an FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp-Trp (WRW4), thus supporting the notion that PACAP27 acts on FPRL1. In terms of the functional role of PACAP27, we found that the peptide stimulated CD11b surface up-regulation and neutrophil chemotactic migration, and that these responses were completely inhibited by WRW4. The interaction between PACAP27 and FPRL1 was analyzed further using truncated PACAPs and chimeric PACAPs using vasoactive intestinal peptide, and the C-terminal region of PACAP27 was found to perform a vital function in the activation of FPRL1. Taken together, our study suggests that PACAP27 activates phagocytes via FPRL1 activation, and that this results in proinflammatory behavior, involving chemotaxis and the up-regulation of CD11b.  相似文献   

19.
Le Y  Ye RD  Gong W  Li J  Iribarren P  Wang JM 《The FEBS journal》2005,272(3):769-778
Formyl peptide receptor-like 1 (FPRL1) is a seven transmembrane domain, G protein-coupled receptor that interacts with a variety of exogenous and host-derived agonists. In order to identify domains crucial for ligand recognition by FPRL1, we used chimeric receptors with segments in FPRL1 replaced by corresponding amino acid sequences derived from the prototype formyl peptide receptor FPR. The chimeric receptors were stably transfected into human embryonic kidney epithelial cells and the capacity of the cells to migrate in response to formyl peptide receptor agonists was evaluated. Our results showed that multiple domains in FPRL1 are involved in the receptor response to chemotactic agonists with the sixth transmembrane domain and the third extracellular loop playing a prominent role. Interestingly, the N-terminus and a segment between the fourth transmembrane domain and the third intracellular loop of FPRL1 are important for receptor interaction with a 42 amino acid amyloid beta peptide (Abeta42), an Alzheimer's disease-associated FPRL1 agonist, but not with MMK-1, a synthetic FPRL1 agonist, suggesting that diverse agonists may use different domains in FPRL1. Considering the potential importance of FPRL1 in inflammation and neurodegenerative diseases, the identification of functional domains in this receptor will provide valuable information for the design of specific receptor antagonists.  相似文献   

20.
Epithelial cells of the alimentary tract play a central role in the mucosal host defence against pathogens and in the recognition of agonists that interact with mucosal surfaces. In particular, the formyl peptide receptor (FPR) family and their three human subtypes: FPR, formyl-peptide-receptor-like-1 (FPRL1) and FPRL2, are involved in the host defence against pathogens that mediate epithelial responses thus upregulating inflammation. To elucidate the mechanisms by which FPR function, we examined the influence of phospholipase D (PLD) 1 and 2 on the activity and signal transduction of human enterocytes cell line HT29. PLD is a key enzyme involved in secretion, endocytosis and receptor signalling. We inhibited PLD1 and 2 by small interference RNA (siRNA) and determined the activity of formyl peptide receptors using Western blotting and cAMP level measurements. We then analyzed the distribution of formyl peptide receptors FPR, FPRL1 and FPRL2 compared to a control. In this study, we demonstrated that the depletion of PLD1 and 2 resulted in a marked reduction of formyl peptide receptor activity due to inhibited extracellular-signal regulated kinases 1/2 (ERK1/2), phosphorylation and cAMP level reduction. In addition, we observed an intracellular accumulation of FPR, FPRL1 and FPRL2 as a result of receptor recycling inhibition using fluorescence microscopy. The constitutive internalization rate was unaffected. Our results support the importance of PLD1 and 2 in formyl peptide receptor function and the role of endocytosis, receptor recycling and reactivation for receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号