首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The in vivo transduction of hepatocytes with conventional retrovirus vectors requires the induction of cell division and this can currently only be achieved by invasive surgery or by inducing severe liver damage. We hypothesised that partial portal branch ligation (PBL) could induce hepatocyte proliferation and efficient gene transfer in the rat. METHODS: We ligated the portal branch serving 70% of the liver and measured the kinetics of liver mass restoration and cell proliferation and the distribution of dividing hepatocytes after administration of 5-bromo-2'-deoxyuridine. The efficiency of retrovirus-mediated gene transfer after PBL was tested by use of beta-galactosidase-expressing recombinant retroviruses. The viruses were administered in a single injection via the portal vein at different times after PBL and the livers of transduced animals were analysed 4 days later. RESULTS: We found that the number of cycling hepatocytes remained stable between 24 and 44 h after PBL (approximately 12.5%). Although there was a high level of inter-animal variability, hepatocyte proliferation was always initiated in the same lobe of the liver. In animals that had undergone PBL, 19% of hepatocytes were transduced 28 h after the administration of a single high-titre injection of retroviruses, mainly around the portal spaces. CONCLUSIONS: PBL can mediate the efficient transduction of hepatocytes in vivo after a single intravenous injection of recombinant retroviruses. This approach is feasible in humans.  相似文献   

2.
3.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   

4.
5.
BACKGROUND: Hydrodynamic injection of naked plasmid DNA (pDNA) via the tail vein is a safe and effective method of gene transfer to the liver. However, successful gene transfer has yet to be shown for hepatocellular carcinoma (HCC); therefore, we investigated the feasibility and efficacy of hydrodynamic injection via the tail vein and hepatic artery in a diethylnitrosamine (DEN)-induced HCC model in rats. METHODS: HCC was induced in Sprague-Dawley rats by 100 ppm DEN in drinking water. pCMV-SPORT-beta-galactosidase (beta-gal, 400 microg) was injected (i) via the tail vein in a volume of 0.1 ml/g in 30 s or (ii) via the hepatic artery in a volume of 5 or 10 ml at 1 ml/s, either with or without temporary occlusion of the inferior vena cava (IVC) and portal vein (PV). The liver was harvested 24 h after administration, and beta-gal expression was evaluated with X-gal staining and measurement of enzymatic activity in tissue homogenates. RESULTS: Hydrodynamic injection via the tail vein achieved transgene expression only in non-cancerous tissue (tumor: 0.16 +/- 0.04%, non-tumor: 5.07 +/- 1.66%). Hydrodynamic injection via the hepatic artery was tolerated, but failed to produce efficient transgene expression in tumor and non-tumor cells. On the other hand, concomitant use of temporary IVC/PV occlusion with hydrodynamic injection via the hepatic artery dramatically increased transgene expression in cancer cells, but tumor-selective gene transfer was not achieved with this procedure (tumor: 7.38 +/- 3.66%, non-tumor: 7.77 +/- 1.06%). CONCLUSIONS: High-volume hydrodynamic injection of a pDNA solution via the hepatic artery with IVC/PV occlusion achieved a high level of gene expression in a HCC rat model. This gene transfer technique may have potential in clinical gene therapy for HCC.  相似文献   

6.
7.

Background

High levels of foreign gene expression in mouse hepatocytes can be achieved by rapid tail vein injection of a large volume of a naked DNA solution, the ‘hydrodynamics‐based procedure’. Rats are more tolerant of the frequent phlebotomies required for monitoring blood parameters than mice, and thus are better for some biomedical research.

Methods

We tested this technique for the delivery of a therapeutic protein in normal rats, using a rat erythropoietin (Epo) expression plasmid vector, pCAGGS‐Epo.

Results

We obtained maximal Epo expression when the DNA solution was injected in a volume of 25 ml (approximately 100 ml/kg body weight) within 15 s. We observed a dose‐response relationship between serum Epo levels and the amount of injected DNA up to 800 µg. Using quantitative real‐time PCR, the vector‐derived Epo mRNA expression was mainly detected in the liver. When a lacZ expression plasmid was injected similarly, β‐galactosidase was exclusively detected in the liver, mainly in hepatocytes. Toxicity attributable to the technique was mild and transient, as assessed by histochemical analysis. Epo gene expression and erythropoiesis occurred with Epo gene transfer in a dose‐dependent manner, and persisted for at least 12 weeks, the last time point examined. Repeated administration of the plasmid DNA also effectively led to erythropoiesis.

Conclusions

These results demonstrate that gene transfer into the liver via rapid tail vein injection can easily be achieved in the rat, which is more than 10 times larger than the mouse, and has significant value for gene function analysis in rats. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

8.
9.
BACKGROUND: The efficient delivery of plasmid DNA (pDNA) to hepatocytes by a hydrodynamic tail vein (HTV) procedure has greatly popularized the use of naked nucleic acids. The hydrodynamic process renders onto the tissue increased physical forces in terms of increased pressures and shear forces that could lead to transient or permanent membrane damage. It can also trigger a series of cellular events to seal or reorganize the stretched membrane. Our goal was to study the uptake mechanism by following the morphological changes in the liver and correlate these with the fate of the injected plasmid DNA. METHODS: We utilized both light microscopic (LM) and electron microscopic (EM) techniques to determine the effect of the HTV procedure on hepatocytes and non-parenchymal cells at various times after injection. The LM studies used paraffin-embedded livers with hematoxylin and eosin (H&E) staining. The immune-EM studies used antibodies labeled with sub-nanometer gold particles followed by silver enhancement to identify the location of injected pDNA at the subcellular level. The level of overall damage to liver cells was estimated based on alanine aminotransferase (ALT) release and clearance. RESULTS: Both the LM and EM results showed the appearance of large vesicles in hepatocytes as early as 5 min post-injection. The number of vesicles decreased by 20-60 min. Plasmid DNA molecules often appeared to be associated with or inside such vesicles. DNA could also be detected in the space of Disse, in the cytoplasm and in nuclei. Non-parenchymal cells also contained DNA, but HTV-induced vesicles could not be observed in them. CONCLUSIONS: Our studies suggest an alternative or additional pathway for naked DNA into hepatocytes besides direct entry via membrane pores. It may be difficult to prove which of these pathways lead to gene expression, but the membrane pore hypothesis alone appears insufficient to explain why expression happens preferentially in hepatocytes. Further study is needed to delineate the importance of each of these putative pathways and their interrelationship in enabling oligonucleotide (siRNA) activity and pDNA expression.  相似文献   

10.
11.
BACKGROUND: The hydrodynamic tail vein (HTV) injection of naked plasmid DNA is a simple yet effective in vivo gene delivery method into hepatocytes. It is increasingly being used as a research tool to elucidate mechanisms of gene expression and the role of genes and their cognate proteins in the pathogenesis of disease in animal models. A greater understanding of its mechanism will aid these efforts and has relevance to macromolecular and nucleic acid delivery in general. METHODS: In an attempt to explore how naked DNA enters hepatocytes the fate of a variety of molecules and particles was followed over a 24-h time frame using fluorescence microscopy. The uptake of some of these compounds was correlated with marker gene expression from a co-injected plasmid DNA. In addition, the uptake of the injected compounds was correlated with the histologic appearance of hepatocytes. RESULTS: Out of the large number of nucleic acids, peptides, proteins, inert polymers and small molecules that we tested, most were efficiently delivered into hepatocytes independently of their size and charge. Even T7 phage and highly charged DNA/protein complexes of 60-100 nm in size were able to enter the cytoplasm. In animals co-injected with an enhanced yellow fluorescent protein (EYFP) expression vector and fluorescently labeled immunoglobulin (IgG), hepatocytes flooded with large amounts of IgG appeared permanently damaged and did not express EYFP-Nuc. Hepatocytes expressing EYFP had only slight IgG uptake. In contrast, when an EYFP expression vector was co-injected with a fluorescently labeled 200-bp linear DNA fragment, both were mostly (in 91% of the observed cells) co-localized to the same hepatocytes 24 h later. CONCLUSIONS: The appearance of permanently damaged cells with increased uptake of some molecules such as endogenous IgG raised the possibility that a molecule could be present in a hepatocyte but its transport would not be indicative of the transport process that can lead to foreign gene expression. The HTV procedure enables the uptake of a variety of molecules (as previous studies also found), but the uptake process for some of these molecules may be associated with a more disruptive process to the hepatocytes that is not compatible with successful gene delivery.  相似文献   

12.
13.
14.
Zhu HZ  Wang W  Feng DM  Sai Y  Xue JL 《FEBS letters》2006,580(18):4346-4352
The success of Cre-mediated conditional gene targeting in liver of mice has until now depended on the generation of Cre recombinase transgenic mice or on viral-mediated transduction. Here, we sought to establish the feasibility of using hydrodynamic gene delivery of Cre recombinase into liver, using a ROSA26 EGFP mouse. The expression of EGFP and beta-galactosidase was exclusively detected in the liver of mice treated with hydrodynamic gene delivery of Cre recombinase, as assessed with fluorescence microscopy and X-Gal staining, respectively; Southern blotting also showed that Cre mediated recombination occurred specifically in the liver and not in other organs. The Cre mediated recombination reached about 61% of hepatocytes of mouse after repeated injection, as analyzed by flow cytometry. These results demonstrate that Cre recombinase can be transferred to the liver of mice through a simple hydrodynamic gene-delivery approach and can mediate efficient recombination in hepatocytes. Thus, hydrodynamic gene delivery of the Cre recombinase provides a valuable approach for Cre-loxP-mediated conditional gene modification in the liver of mice.  相似文献   

15.
16.
17.
18.
BACKGROUND: The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS: Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS: We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION: This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.  相似文献   

19.
20.
The synergistic combination of hydrodynamic-based gene delivery and ultrasound was investigated to achieve improved gene transfer to the kidney. Plasmids encoding firefly luciferase and Erythropoietin (EPO) gene were delivered into the left kidney of rats by single or combinative application of renal vein hydrodynamic injection and ultrasound treatment with or without the addition of ultrasound contrast agents (UCA). Ultrasound exposure was found to enhance the efficiency of hydrodynamic-based gene delivery for both luciferase and EPO expression. An ultrasound exposure intensity of 2 W/cm2 at 10% duty cycle for 15 min, produced a maximal gene expression 4.5 times higher than hydrodynamic delivery alone. Duration, location, and tissue-specificity of gene expression were not changed by ultrasound exposure. Application of UCA reduced the intensity and exposure duration of ultrasound treatment needed for optimal expression. Appropriate application of ultrasound and UCA did not alter histological structure or impair physiological function of the treated kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号