首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hepatitis C virus NS2/3 protease   总被引:1,自引:0,他引:1  
The hepatitis C virus NS2/3 protein is a highly hydrophobic protease responsible for the cleavage of the viral polypeptide between non-structural proteins NS2 and NS3. However, many aspects of the NS2/3 protease's role in the viral life cycle and mechanism of action remain unknown. Based on the recently elucidated crystal structure of NS2, NS2/3 has been proposed to function as a cysteine protease despite its lack of sequence homology to proteases of known function. In addition, although shown to be required for HCV genome replication and persistent infection in a chimpanzee, the role of NS2/3 cleavage in the viral life cycle has not yet been fully investigated. However, several recent studies are beginning to clarify possible roles of the cleaved NS2 protein in modulation of host cell gene expression and apoptosis.  相似文献   

2.
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described.  相似文献   

3.
Membrane topology of the hepatitis C virus NS2 protein   总被引:11,自引:0,他引:11  
The hepatitis C virus (HCV) NS2 protein is a hydrophobic protein. Previous studies indicate that this protein is an integral membrane protein, which is targeted to the membrane of the endoplasmic reticulum (ER) by the signal sequence located in its preceding p7 protein. In this report, we demonstrate that the membrane association of NS2 is p7-independent and occurs co-translationally. Further deletion-mapping studies suggest the presence of two internal signal sequences in NS2. These two internal signal sequences, which are located within amino acids 839-883 and amino acids 928-960, could target the alpha-globin reporter, a cytosolic protein, to the membrane compartments in HuH7 hepatoma cells. The presence of multiple signal sequences for its membrane association suggests that NS2 has multiple transmembrane domains. The glycosylation studies indicate that both amino and carboxyl termini of NS2 are located in the endoplasmic reticulum lumen. Based on these results, a model for the NS2 membrane topology is presented.  相似文献   

4.
BACKGROUND: Efficient vaccines against hepatitis C virus (HCV) infection are urgently needed. Vaccine development has been hampered by the lack of suitable small animal models to reliably test the protective capacity of immmunization. METHODS: We used recombinant murine gammaherpesvirus 68 (MHV-68) as a novel challenge virus in mice and tested the efficacy of heterologous candidate human vaccines based on modified vaccinia virus Ankara or adenovirus, both delivering HCV non-structural NS3 or core proteins. RESULTS: Recombinant MHV-68 expressing NS3 (MHV-68-NS3) or core (MHV-68-core) were constructed and characterized in vitro and in vivo. Mice immunized with NS3-specific vector vaccines and challenged with MHV-68-NS3 were infected but showed significantly reduced viral loads in the acute and latent phase of infection. NS3-specific CD8+ T cells were amplified in immunized mice after challenge with MHV-68-NS3. By contrast, we did neither detect a reduction of viral load nor an induction of core-specific CD8+ T cells after core-specific immunization. CONCLUSIONS: Our data suggest that the challenge system using recombinant MHV-68 is a highly suitable model to test the immunogenicity and protective capacity of HCV candidate vaccine antigens. Using this system, we demonstrated the usefulness of NS3-specific immunization. By contrast, our analysis rather discarded core as a vaccine antigen.  相似文献   

5.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

6.
Molecular modeling and inhibitory potencies of tetrapeptide protease inhibitors of HCV NS3 proposed phenylglycine as a new promising P2 residue. The results suggest that phenylglycine might be capable of interacting with the NS3 (protease-helicase/NTPase) in ways not possible for the common P2 proline-based inhibitors. Thus, a series of tripeptides, both linear and macrocyclic, based on p-hydroxy-phenylglycine in the P2 position were prepared and their inhibitory effect determined. When the p-hydroxy group was replaced by methoxy, isoquinolin-, or quinolinyloxy functions, inhibitors with improved potencies were obtained. The P2 phenylglycine-based inhibitors were further optimized by C-terminal extension to acyl sulfonamides and by P1-P3 cyclization, which gave products with inhibition constants in the nanomolar range ( approximately 75nM).  相似文献   

7.
It is well established that HCV NS5A protein when expressed in mammalian cells perturbs the extracellular signal regulated kinase (ERK) pathway. The protein serine/threonine phosphatase 2A controls the phosphorylation of numerous proteins involved in cell signaling and one characterized function is the regulation of Ras-Raf mitogen activated protein (MAP) kinase signaling pathways. Our results showed that expression of HCV NS5A protein stimulates phosphatase 2A (PP2A) activity in cells, indicating the relevance of NS5A as a regulator of PP2A in vivo. We found that transient expression of the full length NS5A protein in different cell lines leads to a significant increase of the PP2A activity and this activity is specifically inhibited by the addition of okadaic acid, a PP2A inhibitor, in living cells. Further investigation showed that NS5A protein interacts in vivo and in vitro with the scaffolding A and the catalytic C subunits of PP2A. We propose that HCV NS5A represents a viral PP2A regulatory protein. This is a novel function for the NS5A protein which may have a key role in the ability of the virus to deregulate cell growth and survival.  相似文献   

8.
The hepatitis C virus (HCV)-specific CD4+ T-cell response against nonstructural proteins is strongly associated with successful viral clearance during acute hepatitis C. To further develop these observations into peptide-based vaccines and clinical immunomonitoring tools like HLA class II tetramers, a detailed characterization of immunodominant CD4+ T-cell epitopes is required. We studied peripheral blood mononuclear cells from 20 patients with acute hepatitis C using 83 overlapping 20-mer peptides covering the NS3 helicase and NS4. Eight peptides were recognized by > or = 40% of patients, and specific CD4+ T-cell clones were obtained for seven of these and three additional, subdominant epitopes. Mapping of minimal stimulatory sequences defined epitopes of 8 to 13 amino acids in length, but optimal T-cell stimulation was observed with 10- to 15-mers. While some epitopes were presented by different HLA molecules, others were presented by only a single HLA class II molecule, which has implications for patient selection in clinical trials of peptide-based immunotherapies. In conclusion, using two different approaches we identified and characterized a set of CD4+ T-cell epitopes in the HCV NS3-NS4 region which are immunodominant in patients achieving transient or persistent viral control. This information allows the construction of a valuable panel of HCV-specific HLA class II tetramers for further study of CD4+ T-cell responses in chronic hepatitis C. The finding of immunodominant epitopes with very constrained HLA restriction has implications for patient selection in clinical trials of peptide-based immunotherapies.  相似文献   

9.
A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.  相似文献   

10.
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) has been shown to possess protease and helicase activities and has also been demonstrated to spontaneously associate with nonstructural protein NS4A (NS4A) to form a stable complex. Previous attempts to produce the NS3/NS4A complex in recombinant baculovirus resulted in a protein complex that aggregated and precipitated in the absence of nonionic detergent and high salt. A single-chain form of the NS3/NS4A complex (His-NS4A21-32-GSGS-NS3-631) was constructed in which the NS4A core peptide is fused to the N-terminus of the NS3 protease domain as previously described (Taremi et al., 1998). This protein contains a histidine tagged NS4A peptide (a.a. 21-32) fused to the full-length NS3 (a.a. 3-631) through a flexible tetra amino acid linker. The recombinant protein was expressed to high levels in Escherichia coli, purified to homogeneity, and examined for NTPase, nucleic acid unwinding, and proteolytic activities. The single-chain recombinant NS3-NS4A protein possesses physiological properties equivalent to those of the NS3/NS4A complex except that this novel construct is stable, soluble and sixfold to sevenfold more active in unwinding duplex RNA. Comparison of the helicase activity of the single-chain recombinant NS3-NS4A with that of the full-length NS3 (without NS4A) and that of the helicase domain alone suggested that the presence of the protease domain and at least the NS4A core peptide are required for optimal unwinding activity.  相似文献   

11.
Herein, we report the synthesis and structure–activity relationship studies of new analogs of boceprevir 1 and telaprevir 2. Introduction of azetidine and spiroazetidines as a P2 substituent that replaced the pyrrolidine moiety of 1 and 2 led to the discovery of a potent hepatitis C protease inhibitor 37c (EC50 = 0.8 μM).  相似文献   

12.
The NS2 protein of hepatitis C virus (HCV) is released from its polyprotein precursor by two proteolytic cleavages. The N terminus of this protein is separated from the E2/p7 polypeptide by a cleavage thought to be mediated by signal peptidase, whereas the NS2-3 junction located at the C terminus is processed by a viral protease. To characterize the biogenesis of NS2 encoded by the BK strain of HCV, we have defined the minimal region of the polyprotein required for efficient cleavage at the NS2-3 site and analyzed the interaction of the mature polypeptide with the membrane of the endoplasmic reticulum (ER). We have observed that although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at this site. Furthermore, we show that the membrane dependency for efficient in vitro processing varies among different HCV strains and that host proteins located on the ER membrane, and in particular the signal recognition particle receptor, are required to sustain efficient proteolysis. By means of sedimentation analysis, protease protection assay, and site-directed mutagenesis, we also demonstrate that the NS2 protein derived from processing at the NS2-3 site is a transmembrane polypeptide, with the C terminus translocated in the lumen of the ER and the N terminus located in the cytosol.  相似文献   

13.
The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis   总被引:11,自引:0,他引:11  
Chronic hepatitis C virus (HCV) infection frequently leads to liver cancer. To determine the viral factor(s) potentially involved in viral persistence, we focused our work on NS2, a viral protein of unknown function. To assign a role for NS2, we searched for cellular proteins that interact with NS2. Performing a two-hybrid screen on a human liver cDNA library, we found that NS2 interacted with the liver-specific pro-apoptotic CIDE-B protein. Binding specificity of NS2 for CIDE-B was confirmed by cell-free assays associated with colocalization studies and coprecipitation experiments on human endogenous CIDE-B. CIDE-B, a member of the novel CIDE family of apoptosis-inducing factors, has been reported to show strong cell death-inducing activity in its C-terminal domain. We show that this CIDE-B killing domain is involved in the NS2 interaction. NS2 binding was sufficient to inhibit CIDE-B-induced apoptosis because an NS2 deletion mutant unable to interact with CIDE-B in vitro lost its capacity to interfere with CIDE-B cell death activity. Although it has been reported that CIDE-B-induced apoptosis is characterized by mitochondrial localization, the precise apoptotic mechanism remained unknown. Here, we show that CIDE-B induced cell death in a caspase-dependent manner through cytochrome c release from mitochondria. Furthermore, we found that NS2 counteracted the cytochrome c release induced by CIDE-B. In vivo, the CIDE-B protein level was extremely low in adenovirus-infected transgenic mice expressing the HCV polyprotein compared with that in wild-type mice. We suggest that NS2 interferes with the CIDE-B-induced death pathway and participates in HCV strategies to subvert host cell defense.  相似文献   

14.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

15.
Chronic infection by HCV is closely correlated with liver diseases such as cirrhosis, steatosis, and hepatocellular carcinoma. To understand how long-term interaction between HCV and the host leads to pathogenesis, we identified cellular proteins that interact with NS5A and NS5B using a biochemical approach. Stable cell lines that express flag-NS5A or flag-NS5B under tetracycline induction were generated. The induced flag-tagged proteins were immunoprecipitated (IP'd) and associated proteins separated on 2D gels. Protein spots that specifically co-IP'd with NS5A or NS5B were identified by mass spectrometry. HSP27 was identified as a protein that specifically co-IP'd with NS5A but not with NS5B. The N-terminal regions of NS5A (a.a. 1-181) and HSP27 (a.a. 1-122) were defined to be the domains that interact with each other. HSP27 is generally distributed in the cytoplasm. When heat shocked, HSP27 is concentrated in the ER where NS5A is co-localized.  相似文献   

16.
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is known to possess multiple enzymatic activities. In addition to its well-characterized protease activity, HCV NS3 also has ATP hydrolase (ATPase) and nucleic acid unwinding (helicase) activities. We systematically studied the effect of common reagents on all three enzymatic activities with a view to improving assay sensitivity for compound screening and profiling. Inclusion of the detergent lauryl dimethylamine oxide (LDAO) improves protease and helicase activities significantly, allowing robust assays at much lower NS3 concentrations. These conditions enable a particularly sensitive protease assay that uses picomolar concentrations of NS3.  相似文献   

17.
Dengue virus is a major international public health concern, and there is a lack of available effective vaccines. Virus-specific epitopes could help in developing epitope peptide vaccine. Previously, a neutralizing monoclonal antibody (mAb) 4F5 against nonstructural protein 3 (NS3) of dengue virus 2 (DV2) was developed in our lab. In this work, the B cell epitope recognized by mAb 4F5 was identified using the phage-displayed peptide library. The results of the binding assay and competitive inhibition assay indicated that the peptides, residues 460–469 (U460-469 RVGRNPKNEN) of DV2 NS3 protein, were the B cell epitopes recognized by mAb 4F5. Furthermore, the epitope peptides and a control peptide were synthesized and then immunized female BALB/c mice. ELISA analysis showed that immunization with synthesized epitope peptide elicited a high level of antibody in mice, and immunofluorescent staining showed that the antisera from fusion epitope-immunized mice also responded to DV2 NS3 protein, which further characterized the specific response of the present epitope peptide. Therefore, the present work revealed the specificity of the newly identified epitope (U460-469) of DV2 NS3 protein, which may shed light on dengue virus (DV) vaccine design, DV pathogenesis study, and even DV diagnostic reagent development.  相似文献   

18.
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range.  相似文献   

19.
Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly.  相似文献   

20.
丙型肝炎病毒(hepatitis C virus,HCV)是一种严重危害人类健康的病原体,全球感染率约3%,中国普通人群抗HCV阳性率约3.2%。然而,到目前为止,HCV感染还没有有效的治疗方法。近年的研究发现,HCV非结构蛋白NS2在HCV感染中扮演着重要角色,具有许多重要功能。NS2可以在HCV病毒的包装过程中发挥其功能,还可调节宿主细胞的基因表达及凋亡过程。此外,NS2蛋自还可参与NS5A磷酸蛋白的高度磷酸化修饰过程及为感染性HCV病毒粒子产生所必需。本文综述近几年来关于NS2蛋白的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号