首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Genomewide significant linkage to stuttering on chromosome 12   总被引:4,自引:0,他引:4       下载免费PDF全文
Stuttering is a common and sometimes severe communication disorder, of unknown primary etiology, that exists in populations worldwide. Many types of evidence suggest a genetic contribution to stuttering; however, the complex inheritance of this disorder has hindered identification of these factors. We have employed highly inbred families to increase the power of linkage analysis of this disorder. Forty-four Pakistani families with documented or probable consanguinity, from the city of Lahore and surrounding areas, were included. Each family contained multiple cases of stuttering, which were diagnosed using the Stuttering Severity Instrument. Using the Marshfield Weber 9 marker panel, we performed a genomewide linkage scan focused on affected individuals and their parents. The analysis included 199 genotyped individuals, 144 affected and 55 unaffected. The Pedigree Relationship Statistical Test (PREST) was used to identify pedigrees that required additional specification of inbreeding. Initial nonparametric analysis gave evidence of linkage on chromosomes 1, 5, 7, and 12. Additional genotyping was performed on chromosome 12 to a 5-cM level of resolution, and 16 additional individuals were then included, bringing the number of families to 46. Analysis of the enlarged data set provided consistent evidence of linkage on chromosome 12: the S(homoz) scoring function gave a nonparametric LOD score of 4.61, and a LOD score of 3.51 was obtained using the S(all) scoring function. These results suggest that a locus on chromosome 12q may contain a gene with a large effect in this sample.  相似文献   

2.
A genome scan was performed on the first phase sample of the Genetics of Recurrent Early-Onset Depression (GenRED) project. The sample consisted of 297 informative families containing 415 independent affected sibling pairs (ASPs), or, counting all possible pairs, 685 informative affected relative pairs (555 ASPs and 130 other pair types). Affected cases had recurrent major depressive disorder (MDD) with onset before age 31 years for probands or age 41 years for other affected relatives; the mean age at onset was 18.5 years, and the mean number of depressive episodes was 7.3. The Center for Inherited Disease Research genotyped 389 microsatellite markers (mean spacing of 9.3 cM). The primary linkage analysis considered allele sharing in all possible affected relative pairs with the use of the Z(lr) statistic computed by the ALLEGRO program. A secondary logistic regression analysis considered the effect of the sex of the pair as a covariate. Genomewide significant linkage was observed on chromosome 15q25.3-26.2 (Zlr=4.14, equivalent LOD = 3.73, empirical genomewide P=.023). The linkage was not sex specific. No other suggestive or significant results were observed in the primary analysis. The secondary analysis produced three regions of suggestive linkage, but these results should be interpreted cautiously because they depended primarily on the small subsample of 42 male-male pairs. Chromosome 15q25.3-26.2 deserves further study as a candidate region for susceptibility to MDD.  相似文献   

3.
Gout is a disorder of uric-acid metabolism. The Pacific Austronesian population, including Taiwanese aborigines, has a remarkably high prevalence of hyperuricemia and gout, which suggests a founder effect across the Pacific region. We report here a genomewide linkage study of 21 multiplex pedigrees with gout from an aboriginal tribe in Taiwan. From observations of familial clustering, early onset of gout, and clinically severe manifestations, we hypothesized that a major gene plays a role in this trait. Using 382 random polymorphic markers spread across 22 autosomes, we demonstrated a highly significant linkage for gout at marker D4S2623 on chromosome 4q25 (P=.0002 by nonparametric linkage [the NPL(all) statistic]; empirical P=.0006; LOD=4.3, P=4.4x10-6 by logistic regression). When alcohol consumption was included as a covariate in the model, the LOD score increased to 5.66 (P=1.3x10-6). Quantitative traits, including serum uric acid and creatinine, also showed a moderate linkage to this region. To our knowledge, this is the first genome-scan report to identify a genetic locus harboring a gout-susceptibility gene.  相似文献   

4.
Chorea-acanthocytosis: genetic linkage to chromosome 9q21.   总被引:2,自引:0,他引:2  
Chorea-acanthocytosis (CHAC) is a rare autosomal recessive disorder characterized by progressive neurodegeneration and unusual red-cell morphology (acanthocytosis), with onset in the third to fifth decade of life. Neurological impairment with acanthocytosis (neuroacanthocytosis) also is seen in abetalipoproteinemia and X-linked McLeod syndrome. Whereas the molecular etiology of McLeod syndrome has been defined (Ho et al. 1994), that of CHAC is still unknown. In the absence of cytogenetic rearrangements, we initiated a genomewide scan for linkage in 11 families, segregating for CHAC, who are of diverse geographical origin. We report here that the disease is linked, in all families, to a 6-cM region of chromosome 9q21 that is flanked by the recombinant markers GATA89a11 and D9S1843. A maximum two-point LOD score of 7.1 (theta = .00) for D9S1867 was achieved, and the linked region has been confirmed by homozygosity-by-descent, in offspring from inbred families. These findings provide strong evidence for the involvement of a single locus for CHAC and are the first step in positional cloning of the disease gene.  相似文献   

5.
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite >50 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families (931 from an Australian group and 245 from a U.K. group), each with at least two members--mainly affected sister pairs--with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 (maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 (MLS = 2.09). Minor peaks (with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.  相似文献   

6.
Previous linkage studies in schizophrenia have been discouraging due to inconsistent findings and weak signals. Genetic heterogeneity has been cited as one of the primary culprits for such inconsistencies. We have performed a 10-cM autosomal genomewide linkage scan for schizophrenia susceptibility regions, using 29 multiplex families of Ashkenazi Jewish descent. Although there is no evidence that the rate of schizophrenia among the Ashkenazim differs from that in other populations, we have focused on this population in hopes of reducing genetic heterogeneity among families and increasing the detectable effects of any particular locus. We pursued both allele-sharing and parametric linkage analyses as implemented in Genehunter, version 2.0. Our strongest signal was achieved at chromosome 10q22.3 (D10S1686), with a nonparametric linkage score (NPL) of 3.35 (genomewide empirical P=.035) and a dominant heterogeneity LOD score (HLOD) of 3.14. Six other regions gave NPL scores >2.00 (on chromosomes 1p32.2, 4q34.3, 6p21.31, 7p15.2, 15q11.2, and 21q21.2). Upon follow-up with an additional 23 markers in the chromosome 10q region, our peak NPL score increased to 4.27 (D10S1774; empirical P=.00002), with a 95% confidence interval of 12.2 Mb for the location of the trait locus (D10S1677 to D10S1753). We find these results encouraging for the study of schizophrenia among Ashkenazi families and suggest further linkage and association studies in this chromosome 10q region.  相似文献   

7.
Mild/moderate (common) myopia is a very common disorder, with both genetic and environmental influences. The environmental factors are related to near work and can be measured. There are no known genetic loci for common myopia. Our goal is to find evidence for a myopia susceptibility gene causing common myopia. Cycloplegic and manifest refraction were performed on 44 large American families of Ashkenazi Jewish descent, each with at least two affected siblings. Individuals with at least -1.00 diopter or lower in each meridian of both eyes were classified as myopic. Microsatellite genotyping with 387 markers was performed by the Center for Inherited Disease Research. Linkage analyses were conducted with parametric and nonparametric methods by use of 12 different penetrance models. The family-based association test was used for an association scan. A maximum multipoint parametric heterogeneity LOD (HLOD) score of 3.54 was observed at marker D22S685, and nonparametric linkage analyses gave consistent results, with a P value of.0002 at this marker. The parametric multipoint HLOD scores exceeded 3.0 for a 4-cM interval, and significant evidence of genetic heterogeneity was observed. This genomewide scan is the first step toward identifying a gene on chromosome 22 with an influence on common myopia. At present, we are following up our linkage results on chromosome 22 with a dense map of >1,500 single-nucleotide-polymorphism markers for fine mapping and association analyses. Identification of a susceptibility locus in this region may eventually lead to a better understanding of gene-environment interactions in the causation of this complex trait.  相似文献   

8.
We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.  相似文献   

9.
Obsessive compulsive disorder (OCD) has a complex etiology that encompasses both genetic and environmental factors. However, to date, despite the identification of several promising candidate genes and linkage regions, the genetic causes of OCD are largely unknown. The objective of this study was to conduct linkage studies of childhood-onset OCD, which is thought to have the strongest genetic etiology, in several OCD-affected families from the genetically isolated population of the Central Valley of Costa Rica (CVCR). The authors used parametric and non-parametric approaches to conduct genome-wide linkage analyses using 5,786 single nucleotide repeat polymorphisms (SNPs) in three CVCR families with multiple childhood-onset OCD-affected individuals. We identified areas of suggestive linkage (LOD score ≥ 2) on chromosomes 1p21, 15q14, 16q24, and 17p12. The strongest evidence for linkage was on chromosome 15q14 (LOD = 3.13), identified using parametric linkage analysis with a recessive model, and overlapping a region identified in a prior linkage study using a Caucasian population. Each CVCR family had a haplotype that co-segregated with OCD across a ~7 Mbp interval within this region, which contains 18 identified brain expressed genes, several of which are potentially relevant to OCD. Exonic sequencing of the strongest candidate gene in this region, the ryanodine receptor 3 (RYR3), identified several genetic variants of potential interest, although none co-segregated with OCD in all three families. These findings provide evidence that chromosome 15q14 is linked to OCD in families from the CVCR, and supports previous findings to suggest that this region may contain one or more OCD susceptibility loci.  相似文献   

10.
Carotid intimal medial thickness (IMT) is a heritable quantitative measure of atherosclerosis. A genomewide linkage analysis was conducted to localize a quantitative-trait locus (QTL) influencing carotid IMT. Carotid IMT was measured in 596 men and 629 women from 311 extended families (1,242 sib pairs) in the Framingham Heart Study Offspring cohort. B-mode carotid ultrasonography was used to define mean IMT of the carotid artery segments. Multipoint variance-component linkage analysis was performed. Evidence for significant linkage to internal carotid artery (ICA) IMT (two-point log odds [LOD] score 4.1, multipoint LOD score 3.4) was found 161 cM from the tip of the short arm of chromosome 12; these results were confirmed using the GENEHUNTER package (multipoint LOD score 4.3). No LOD scores >2.0 were observed for common carotid artery (CCA) IMT. Association analysis of a single-nucleotide-polymorphism variant of SCARB1 (minor allele frequency 0.13), a gene in close proximity to the region of peak linkage, revealed a protective association of the missense variant allele in exon 1 of SCARB1, with decreased ICA IMT compared with subjects homozygous for the common allele. Although the exon 1 variant contributed 2% to overall variation in ICA IMT, there was no significant change in the peak LOD score after adjustment in the linkage analyses. These data provide substantial evidence for a QTL on chromosome 12 influencing ICA IMT and for association of a rare variant of SCARB1, or a nearby locus, with ICA IMT. Because this rare SCARB1 variant does not account for our observed linkage, further investigations are warranted to identify additional candidate-gene variants on chromosome 12 predisposing to atherosclerosis phenotypes and clinical vascular disease.  相似文献   

11.
A t(21q21q) ring chromosome   总被引:3,自引:0,他引:3  
E Orye  M Craen 《Human heredity》1974,24(3):253-258
  相似文献   

12.
Hereditary geniospasm is an unusual movement disorder causing episodes of involuntary tremor of the chin and the lower lip. Episodes typically start in early childhood and may be precipitated by stress, concentration, and emotion. Hereditary geniospasm is inherited as an autosomal dominant trait, and its cause is not known. We report the results of a genomewide genetic linkage study in a four-generation British family with hereditary geniospasm. Positive two-point LOD scores were obtained for 15 microsatellite markers on the peri-centromeric region of chromosome 9. A maximum two-point LOD score of 5.24 at theta = .00 was obtained for the marker D9S1837. Construction of haplotypes defined an interval of 2.1 cM between the flanking markers D9S1806 and D9S175, thus assigning one locus for hereditary geniospasm to the proximal long arm of chromosome 9q13-q21. Hereditary geniospasm in a second British family is not linked to this region, indicating genetic heterogeneity. These findings may have implications for other inherited focal movement disorders that as yet remain unmapped.  相似文献   

13.
On the basis of accumulating evidence that obesity has a substantial genetic component, a genomewide search for linkages of DNA markers to percent body fat is ongoing in Pima Indians, a population with a very high prevalence of obesity. An initial screen of the genome (>600 markers in 874 individuals) has been completed using highly polymorphic markers (mean heterozygosity = .67). Reported here are the sib-pair linkage results for percent body fat (277 siblings), the best available indicator of overall obesity. Single-marker linkages to percent body fat were evaluated by sib-pair analysis for quantitative traits. From these analyses, the best evidence of genes influencing body fat came from markers at chromosome 11q21-q22 and 3p24.2-p22 (P = .001; LOD = 2.0). Regions flanking these markers were further investigated by multipoint linkage. The evidence for linkage at 11q21-q22 increased to P = .0002 (LOD = 2.8), peaking between markers D11S2000 and D11S2366. Evidence for linkage at 3p24.2-p22 did not change. No association was detected for any marker in the region. Although several genes are known in the 11q21-q22 region, none have been implicated as candidate genes for obesity.  相似文献   

14.
We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.  相似文献   

15.
Summary Two recent articles have reported the linkage of a gene for recessive spinal muscular atrophy (SMA) on the chromosome region 5q11.2–13.3. Our data show no linkage of the dominantly inherited forms of SMA to this chromosome region.  相似文献   

16.
Paroxysmal dystonic choreoathetosis (PDC) is characterized by attacks of involuntary movements that last up to several hours and occur at rest both spontaneously and following caffeine or alcohol consumption. We analyzed a Polish-American kindred with autosomal dominant PDC and identified tight linkage between the disorder and microsatellite markers on chromosome 2q (maximum two-point LOD score 4.77; recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant PDC on distal chromosome 2q. The fact that three other paroxysmal neurological disorders (periodic ataxia with myokymia and hypo- and hyperkalemic periodic paralysis) are due to mutation in ion-channel genes raises the possibility that PDC is also due to an ion-channel gene mutation. It is noteworthy that a cluster of sodium-channel genes is located on distal chromosome 2q, near the PDC locus. Identifying the PDC locus on chromosome 2q will facilitate discovery of the PDC gene and enable investigators to determine whether PDC is genetically homogeneous and whether other paroxysmal movement disorders are also genetically linked to the PDC locus.  相似文献   

17.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

18.
Using (a) somatic cell hybrids retaining partial chromosome 5 and (b) clinical samples from patients with acquired deletions of the long arm of chromosome 5, combined with chromosome 5-linked DNA probes, some of which exhibited RFLPs, we have determined the order of a series of genes on chromosome 5. The order established is 5pter----MLVI-2----cen----HEXB----DHFR----Pi227- --- cp12.6----(IL5,IL4)----IL3----GMCSF---- FGFA---- (CSF1R,PDGFR)----(treC,ADRBR)----(ARH-H9,CSF1 )----qter. The suggested order and orientation for the closely linked IL3/GMCSF gene pair is cen----5' IL3 3'----5' GMCSF 3'----qter, on the basis of analysis of the GMCSF rearrangement in HL60 DNA. The map position of the GRL locus, which was consistent with both somatic cell hybrid and 5q- analyses, was telomeric to GMCSF and centromeric to CSF1R/PDGFR, near FGFA. Long-range restriction-enzyme analysis of 5q- DNAs did not detect rearrangements of 5q-linked probes except in HL60 DNA, but it did reveal putative long-range RFLPs of several loci. RFLPs for GRL, Pi227, cp12.6, IL3, and CSF1R can detect deletions in bone marrow and in leukemia cells from patients with acquired 5q deletions.  相似文献   

19.
Genetic linkage map of human chromosome 21   总被引:19,自引:0,他引:19  
Two of the most common disorders affecting the human nervous system, Down syndrome and Alzheimer's disease, involve genes residing on human chromosome 21. A genetic linkage map of human chromosome 21 has been constructed using 13 anonymous DNA markers and cDNAs encoding the genes for superoxide dismutase 1 (SOD1) and the precursor of Alzheimer's amyloid beta peptide (APP). Segregation of restriction fragment length polymorphisms (RFLPs) for these genes and DNA markers was traced in a large Venezuelan kindred established as a "reference" pedigree for human linkage analysis. The 15 loci form a single linkage group spanning 81 cM on the long arm of chromosome 21, with a markedly increased frequency of recombination occurring toward the telomere. Consequently, 40% of the genetic length of the long arm corresponds to less than 10% of its cytogenetic length, represented by the terminal half of 21q22.3. Females displayed greater recombination than males throughout the linkage group, with the difference being most striking for markers just below the centromere. Definition of the linkage relationships for these chromosome 21 markers will help refine the map position of the familial Alzheimer's disease gene and facilitate investigation of the role of recombination in nondisjunction associated with Down syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号