首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The cyclin-dependent kinase inhibitor p27 is a putative tumor suppressor that is downregulated in the majority of human prostate cancers. The mechanism of p27 down-regulation in prostate cancers in unknown, but presumably involves increased proteolysis mediated by the SCFSKP2 ubiquitin ligase complex. Here we used the human prostate cancer cell line LNCaP, which undergoes G1 cell cycle arrest in response to androgen, to examine the role of the SKP2 F-box protein in p27 regulation in prostate cancer.

Results

We show that androgen-induced G1 cell cycle arrest of LNCaP cells coincides with inhibition of cyclin-dependent kinase 2 activity and p27 accumulation caused by reduced p27 ubiquitylation activity. At the same time, androgen decreased expression of SKP2, but did not affect other components of SCFSKP2. Adenovirus-mediated overexpression of SKP2 led to ectopic down-regulation of p27 in asynchronous cells. Furthermore, SKP2 overexpression was sufficient to overcome p27 accumulation in androgen arrested cells by stimulating cellular p27 ubiquitylation activity. This resulted in transient activation of CDK2 activity, but was insufficient to override the androgen-induced G1 block.

Conclusions

Our studies suggest that SKP2 is a major determinant of p27 levels in human prostate cancer cells. Based on our in vitro studies, we suggest that overexpression of SKP2 may be one of the mechanisms that allow prostate cancer cells to escape growth control mediated by p27. Consequently, the SKP2 pathway may be a suitable target for novel prostate cancer therapies.  相似文献   

2.
3.
4.
1,25-(OH)2 vitamin D3 (1,25-(OH)2D3) exerts antiproliferative effects via cell cycle regulation in a variety of tumor cells, including prostate. We have previously shown that in the human prostate cancer cell line LN-CaP, 1,25-(OH)2D3 mediates an increase in cyclin-dependent kinase inhibitor p27Kip1 levels, inhibition of cyclin-dependent kinase 2 (Cdk2) activity, hypophosphorylation of retinoblastoma protein, and accumulation of cells in G1. In this study, we investigated the mechanism whereby 1,25-(OH)2D3 increases p27 levels. 1,25-(OH)2D3 had no effect on p27 mRNA levels or on the regulation of a 3.5-kb fragment of the p27 promoter. The rate of p27 protein synthesis was not affected by 1,25-(OH)2D3 as measured by luciferase activity driven by the 5'- and 3'-untranslated regions of p27 that regulate p27 protein synthesis. Pulse-chase analysis of 35S-labeled p27 revealed an increased p27 protein half-life with 1,25-(OH)2D3 treatment. Because Cdk2-mediated phosphorylation of p27 at Thr187 targets p27 for Skp2-mediated degradation, we examined the phosphorylation status of p27 in 1,25-(OH)2D3-treated cells. 1,25-(OH)2D3 decreased levels of Thr187 phosphorylated p27, consistent with inhibition of Thr187 phosphorylation-dependent p27 degradation. In addition, 1,25-(OH)2D3 reduced Skp2 protein levels in LNCaP cells. Cdk2 is activated in the nucleus by Cdk-activating kinase through Thr160 phosphorylation and by cdc25A phosphatase via Thr14 and Tyr15 dephosphorylation. Interestingly, 1,25-(OH)2D3 decreased nuclear Cdk2 levels as assessed by subcellular fractionation and confocal microscopy. Inhibition of Cdk2 by 1,25-(OH)2D3 may thus involve two mechanisms: 1) reduced nuclear Cdk2 available for cyclin binding and activation and 2) impairment of cyclin E-Cdk2-dependent p27 degradation through cytoplasmic mislocalization of Cdk2. These data suggest that Cdk2 mislocalization is central to the antiproliferative effects of 1,25-(OH)2D3.  相似文献   

5.
6.
7.
8.
A wide spectrum of anti-cancer activity of genistein and beta-lapachone in various tumors has been reported in single treatments. In this study the combined effects of genistein and beta-lapachone on the chemosensitivity of LNCaP and PC3 human prostate cancer cells was determined in vitro, using 3-[4,5-dimethylthiazol-2-yl]-2-,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) to study treatment-induced growth inhibition and cytotoxicity and, annexin V-fluoresceine (FI) and terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-propidium iodide (PI) assays to determine potential treatment-induced apoptosis and/or necrosis. The results showed: i) that both PC3 and LNCaP are sensitive to single and combination treatments regardless of hormone sensitivity status, ii) that treatment induced dual death pathways (apoptosis and necrosis) in both cell types, iii) that growth inhibition in both cell types correlated positively with cell death via apoptosis at lower drug concentrations and necrosis at higher concentrations, iv) that combination of genistein and beta-lapachone had synergistic inhibitory effects on growth and proliferation in both cell types. The synergistic inhibitory effect was correlated positively with treatment-induced cell death via apoptosis and necrosis. The overall results indicate that combination treatments with beta-lapachone and genistein are more potent in killing both PC3 and LNCaP cancer cells than treatment with either genistein or beta-lapachone alone. beta-lapachone acts at the G1 and S phase checkpoints in the cell cycle, while genistein induces cell cycle arrest at the G2-M stage. The current results are therefore in agreement with the hypothesis that drug combinations that target cell cycles at different critical checkpoints would be more effective in causing cell death. This result provides a rationale for in vivo studies to determine whether beta-lapachone-genistein combination will provide effective chemotherapy for prostate cancer, regardless of the tumor sensitivity to hormone.  相似文献   

9.
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.  相似文献   

10.
11.
12.
In the United States, the primary cancer in elderly men is prostate cancer (33% of newly diagnosed malignancies), but the prevalence is 75% lower in some Mediterranean countries. A possible explanation for the large difference in prostate cancer cases is that in Mediterranean countries the diet includes fish, olive oil and high amounts of nuts, fruits, vegetables, along with a regular intake of wine with meals several times per week. The LNCaP prostate cancer cells represent the nonaggressive androgen-dependent cell model that expresses moderate levels of cyclooxygenase-2 (COX-2). Epidemiological evidence indicates that polyphenolic compounds in diets are protective against cancer, and cyanidin and kaempferol are abundant in wine and plants. Therefore, the objective of the investigation was to determine the effects of cyanidin and kaempferol on prostaglandin E2 (PGE2) and COX-2 protein levels, and if peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor kappaB (NFkappaB) are involved in the expression of COX-2 in prostate cancer cells. Cyanidin and kaempferol at 1 microM reduced the level of PGE2 in LNCaP cell cultures and also attenuated the effect of arachidonic acid on increasing the amount of PGE2. Cyanidin reduced the levels of COX-2 protein in a dose- and time-dependent fashion. PPARgamma mRNA levels were lower in cells treated after 24 h with kaempferol (0.1 and 1 microM) and cyanidin (1 microM). The reduction of COX-2 mRNA by kaempferol and cyanidin may be mediated through the actions of NFkappaB and PPARgamma as nuclear factors that bind to the COX-2 gene promoter.  相似文献   

13.
14.
Prostate cancers often develop insensitivity to TGF-beta to gain a growth advantage. In this study, we explored the status of promoter methylation of TGF-beta receptors (TbetaRs) in a prostate cancer cell line, LNCaP, which is insensitive to TGF-beta. Sensitivity to TGF-beta was restored in cells treated with 5-Aza-2'-deoxycytidine (5-Aza), as indicated by an increase in the expression of phosphorylated Smad-2, type I (TbetaRI), and type II (TbetaRII) TGF-beta receptors, and a reduced rate of proliferation. The same treatment did not significantly affect a benign prostate cell line, RWPE-1, which is sensitive to TGF-beta. Mapping of methylation sites was performed by screening 82 potential CpG methylation sites in the promoter of TbetaRI and 33 sites in TbetaRII using methylation-specific PCR and sequence analysis. There were six methylation sites (-365, -356, -348, -251, -244, -231) in the promoter of TbetaRI. The -244 site was located in an activator protein (AP)-2 box. There were three methylated sites (-140, +27, +32) in the TbetaRII promoter and the -140 site was located in one of the Sp1 boxes. Chromatin immunoprecipitation analysis demonstrated DNA binding activity of AP-2 in the TbetaRI promoter and of Sp1 in the TbetaRII promoter after treatment with 5-Aza. To test whether promoter methylation is present in clinical specimens, we analyzed human prostate specimens that showed negative staining for either TbetaRI or TbetaRII in a tissue microarray system. DNA samples were isolated from the microarray after laser capture microdissection. Methylation-specific PCR was performed for TbetaRI (six sites) and TbetaRII (three sites) promoters as identified in LNCaP cells. A significant number of clinical prostate cancer specimens lacked expression of either TbetaRI and/or TbetaRII, especially those with high Gleason's scores. In those specimens showing a loss of TbetaR expression, a promoter methylation pattern similar to that of LNCaP cells was a frequent event. These results demonstrate that insensitivity to TGF-beta in some prostate cancer cells is due to promoter methylation in TbetaRs.  相似文献   

15.
16.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

17.
The antiproliferative effect of 1alpha,25(OH)(2)D(3) on human prostate cancer cells is well known, but the mechanism is still not fully understood, especially its androgen-dependent action. Based on cDNA microarray results, we found that long-chain fatty-acid-CoA ligase 3 (FACL3/ACS3) might play an important role in vitamin D(3) and androgen regulation of LNCaP cell growth. The expression of FACL3/ACS3 was found to be significantly upregulated by 1alpha,25(OH)(2)D(3) and the regulation was shown to be time-dependent, with the maximal regulation over 3.5-fold at 96h. FACL3/ACS3 was a dominant isoform of FACL/ACS expressed in LNCaP cells as indicated by measuring the relative expression of each isoform. 1alpha,25(OH)(2)D(3) had no significant effect on the expression of FACL1(FACL2), FACL4 and FACL6 except for its downregulation of FACL5 at 24 and 48h by around twofold. The upregulation of FACL3/ACS3 expression by 1alpha,25(OH)(2)D(3) was accompanied with increased activity of FACL/ACS as demonstrated by enzyme activity assay using a (14)C-labeled substrate preferential for FACL3/ACS3. The growth inhibitory effect of 1alpha,25(OH)(2)D(3) on LNCaP cells was significantly attenuated by FACL3/ACS3 activity inhibitor. Androgen withdrawal (DCC-serum), in the presence of antiandrogen Casodex or in AR-negative prostate cancer cells (PC3 and DU145), vitamin D(3) failed to regulate FACL3/ACS3 expression. The upregulation of FACL3/ACS3 expression by vitamin D(3) was recovered by the addition of DHT in DCC-serum medium. Western blot analysis showed that the expression of androgen receptor (AR) protein was consistent with vitamin D(3) regulation of FACL3/ACS3 expression. Taken together, the data suggest that the upregulation of FACL3/ACS3 expression by vitamin D(3) is through an androgen/AR-mediated pathway and might be one of the contributions of the vitamin D(3) antiproliferative effect in prostate cancer LNCaP cells.  相似文献   

18.
Positive responses to combined androgen elimination therapy and radiation therapy have been well documented in the treatment of prostate cancer patients. The detailed mechanisms how androgen-androgen receptor (AR) cross talks to the radiation-related signal pathways, however, remain largely unknown. Here we report the identification of hRad9, a key member of the checkpoint Rad protein family, as a coregulator to suppress androgen-AR transactivation in prostate cancer cells. In vivo and in vitro interaction assays using Saccharomyces cerevisiae two-hybrid, mammalian two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation methods prove that AR can interact with the C terminus of hRad9 via its ligand binding domain. The FXXLF motif within the C terminus of hRad9 interrupts the androgen-induced interaction between the N terminus and C terminus of AR. This interaction between AR and hRad9 may result in the suppression of AR transactivation, demonstrated by the repressed AR transactivation in androgen-induced luciferase reporter assay and the reduced endogenous prostate-specific antigen expression in Western blot assay. Addition of small interfering RNA of hRad9 can reverse hRad9 suppression effects, which suggests that hRad9 functions as a repressor of AR transactivation in vivo. Together, our data provide the first linkage between androgen-AR signals and radiation-induced responses. Further studies of the influence of hRad9 on prostate cancer growth may provide potential new therapeutic approaches.  相似文献   

19.

Background  

Androgens are required for both normal prostate development and prostate carcinogenesis. We used DNA microarrays, representing approximately 18,000 genes, to examine the temporal program of gene expression following treatment of the human prostate cancer cell line LNCaP with a synthetic androgen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号