首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield.  相似文献   

2.
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted.In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times,the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin +zeatin riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains,reduce water input, and increase grain yield.  相似文献   

3.
Elevated levels of abscisic acid (ABA) are closely associated with cereal grain filling under water deficit. However, grain dehydration during grain filling has received little attention. In this paper, three experiments with drought stress and exogenous ABA treatments were conducted to investigate the relationship between ABA and grain dehydration in maize (Zea mays L.) during the grain-filling period. The results indicated that exogenous ABA application and drought stress led to the same tendency of the grain ABA concentration, carbohydrate concentration and dehydration rate to increase but the moisture content to decrease. Moreover, the time to reach the maximum grain-filling rate was advanced, and the grain-filling period was shortened. In in vitro culture experiments, the sucrose-to-starch conversion was promoted, mainly influenced by sucrose synthase, ADP-glucose pyrophosphorylase (AGPase), and soluble starch synthase during the middle grain-filling stage, and the improvement in starch synthesis was possibly induced by AGPase. Correlation analysis showed that the ABA level was significantly negatively correlated with the moisture content and positively correlated with the starch level. A close and notably negative correlation was observed between the grain moisture content and starch level. In summary, adequate grain ABA promoted sucrose-to-starch conversion, shortened the duration of grain filling and accelerated grain dehydration, resulting in precocious grain maturation.  相似文献   

4.
Detached ears of wheat were cultured in liquid medium manipulated for sucrose and glutamine contents, and the accumulation of starch and protein in relation to the activities of sucrose cleaving—, ammonia assimilating—, and transaminating enzymes was studied in the grain. With an increase in the concentrations of sucrose from 44 to 176 mM and glutamine from 6.4 to 25.7 mM (keeping their ratio at a constant value of 7:1), the contents of starch and protein increased in the grains. However, when the grains were cultured in the medium containing 8.5 to 34 mM glutamine and a fixed concentration of 117 mM sucrose, there was a gradual increase in protein and decrease in starch content in the grain. By such manipulation in the liquid medium, the content of free amino acids also increased in the grain up to 12 days culturing. Amongst sucrose cleaving enzymes, the activities of sucrose-UDP glucosyl transferase and soluble alkaline invertase were much lower than the activity of soluble acid invertase. At high concentration (34 mM) of glutamine in the medium, containing 117 mM sucrose, there was drastic decrease in the activities of soluble acid invertase and UDPG pyrophosphorylase but the activities of ADPG pyrophosphorylase, alkaline inorganic pyrophosphatase, glutamate dehydrogenase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase increased in the grain with increase in glutamine concentration in the culture medium. Evidently, an increase in the level of amino nitrogen, coupled with an optimum sucrose concentration in the grain raised through liquid culturing enhances the conversion of sucrose to protein at the cost of starch accumulation in wheat.  相似文献   

5.
Detached ears of three winter wheat ( Triticum aestivum L.) varieties were cultured in solution for 12 days with sucrose levels varying from 36.5 to 292 m M. The dry weight and starch content of grains increased asymptotically with the sucrose level in the solution. At 4 days of culture, glucose phosphate isomerase (EC 5.3.1.9) activity grain−1 was lower with 36.5 m M than with higher sucrose levels in the medium; at 8 days, adenosinc diphosphoglucose pyrophosphorylase (EC 2.7.7.27) and (soluble plus bound) starch synthase (EC 2.4.1.21) activities grain−1 were higher with 146 and 292 m M sucrose than with 36.5 and 73 m M sucrose. The multiple regression of starch content over these enzyme activities showed that starch synthase was relatively more important as an independent variable. The dry weight and starch content of grains were higher in the variety Maris Huntsman than in Splendeur and Hobbit. The water content of grains was lower in Splendeur than in the other two varieties. At 4 days the glucose phosphate isomerase, adenosine diphosphoglucose pyrophosphorylase and starch synthase activities grain−1 were smaller in Splendeur than in Hobbit and Maris Huntsman and al 8 days they were higher in Maris Huntsman than in Hobbit and Splendeur. The varietal differences in starch content of grains were related to the activities of glucose phosphate isomerase and especially of starch synthase.  相似文献   

6.
Enzymes of carbohydrate metabolism in the developing endosperm of maize   总被引:36,自引:22,他引:14       下载免费PDF全文
A number of enzymes presumably implicated in starch synthesis were assayed at various stages of endosperm development ranging from 8 days to 28 days after pollination. Activity for invertase, hexokinase, the glucose phosphate isomerases, the phosphoglucomutases, phosphorylase I, uridine diphosphate glucose pyrophosphorylase, and the starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase was present at the earliest stage of development (8 days) studied. Activity was detectable for phosphorylase III, the soluble adenosine diphosphate glucose-starch glucosyltransferase, adenosine diphosphate glucose pyrophosphorylase, and sucrose-uridine diphosphate glucosyltransferase at 12 days. For phosphorylase II and cytidine diphosphate glucose pyrophosphorylase, activity was first detectable at the 14- and 16-day stages, respectively. Rapid increases in starch content are observed prior to detectable activity for adenosine diphosphate glucose pyrophosphorylase, the soluble adenosine diphosphate glucose-starch glucosyltransferase and phosphorylases II and III. For all enzymes, except invertase, activity per endosperm rises to a peak at 22 or 28 days. Greatest activity for invertase is found at 12 days with a steady decline thereafter. The pattern of invertase activity in comparison with that of sucrose-uridine diphosphate glucosyltransferase supports previous suggestions, that the latter plays a key role in the conversion of sucrose to starch. In addition to phosphorylases I, II, and III, multiple forms of glucosephosphate isomerase and phosphoglucomutase were detected.  相似文献   

7.
8.
? Studies of embryo dormancy in relation to preharvest sprouting (PHS) in cereals have focused on ABA and other hormones. The relationship between these phenomena and the rate of grain filling has not been investigated. ? A collection of barley mutants impaired in starch synthesis was assessed for preharvest sprouting in the field. In subsequent glasshouse experiments, developing grains were assayed for germination index, sugars, abscisic acid (ABA) and the effects of temperature and exogenous ABA on germination. ? Mutant lines displayed greater preharvest sprouting in the field than parental lines. In the glasshouse, nondeep physiological dormancy was reduced in developing grains of five lines with mutations affecting proteins involved in endosperm starch synthesis. Inhibition of germination by exogenous ABA and elevated temperature was decreased in developing mutant grains. Sugar concentrations were high but embryo and endosperm ABA contents were unaltered. ? We reveal a direct connection between grain filling and the extent of grain dormancy. Impaired endosperm starch synthesis directly influences the acquisition of embryo dormancy, perhaps because endosperm sugar concentrations modulate the ABA responsiveness of the embryo. Thus environmental or genetic factors that reduce grain filling are likely to reduce dormancy and enhance susceptibility to PHS.  相似文献   

9.
10.
Yang J  Zhang J  Wang Z  Xu G  Zhu Q 《Plant physiology》2004,135(3):1621-1629
This study tested the hypothesis that a controlled water deficit during grain filling of wheat (Triticum aestivum) could accelerate grain-filling rate through regulating the key enzymes involved in Suc-to-starch pathway in the grains. Two high lodging-resistant wheat cultivars were field grown. Well-watered and water-deficit (WD) treatments were imposed from 9 DPA until maturity. The WD promoted the reallocation of prefixed 14C from the stems to grains, shortened the grain-filling period, and increased grain-filling rate or starch accumulation rate (SAR) in the grains. Activities of Suc synthase (SuSase), soluble starch synthase (SSS), and starch branching enzyme (SBE) in the grains were substantially enhanced by WD and positively correlated with the SAR. ADP Glc pyrophosphorylase activity was also enhanced in WD grains initially and correlated with SAR with a smaller coefficient. Activities of granule-bound starch synthase and soluble and insoluble acid invertase in the grains were less affected by WD. Abscisic acid (ABA) content in the grains was remarkably enhanced by WD and very significantly correlated with activities of SuSase, SSS, and SBE. Application of ABA on well-watered plants showed similar results as those by WD. Spraying with fluridone, an ABA synthesis inhibitor, had the opposite effect. The results suggest that increased grain-filling rate is mainly attributed to the enhanced sink activity by regulating key enzymes involved in Suc-to-starch conversion, especially SuSase, SSS, and SBE, in wheat grains when subjected to a mild water deficit during grain filling, and ABA plays a vital role in the regulation of this process.  相似文献   

11.
Detached ears of sorghum (Sorghum vulgare) were cultured in complete liquid medium containing Ca2+(0, 3, 10 and 30 mM) and effect of this ion on the conversion of sucrose to starch with respect to the activities of amylases, sucrose synthase, sucrose phosphate synthase and soluble invertases were studied in developing grains. Presence of 3 mM Ca2+ in culture medium enhanced both accumulation of starch and activity of alpha-amylase in grain but without having any influence on the activity of beta-amylase. However, with 10 and 30 mM Ca2+, the accumulation of starch and activities of both amylases decreased and with advancement in culturing period, starch accumulation was further decreased. Irrespective of its concentration, Ca2+ enhanced the activities of sucrose synthase (synthesis), sucrose-phosphate synthase, soluble acid invertase and soluble-neutral invertase. Increase in the concentration of Ca2+ in culture medium was concomitant with an elevation in relative proportion of sucrose in the grain reflecting a net balance in per cent increase with Ca2+ in the activities of sucrose-synthesizing enzymes over sucrose-hydrolysing ones. Based on the results, it is suggested that assimilation of Ca2+ by grain is essential for maintaining high activity of alpha-amylase to generate starch primers required for the conversion of sucrose to starch during grain filling in sorghum.  相似文献   

12.
The synthesis and accumulation of starch is greatly affected by environmental stress. Wheat grown in the downstream area of the Yangtze River is easily subjected to stress of waterlogging and acid rain. In order to probe the effect of waterlogging and acid rain on yield and starch characteristic, we used winter wheat cultivars of Yangmai 16 (more resistant) and Wennong 17 (relatively sensitive) to sole stress of acid rain or waterlogging and to their combinations during grain filling. The responses of grain yield, the physiochemical properties and morphology of starch granules in endosperm to the stresses were investigated. Compared with CT (control), grain yield in Wennong 17 were significantly decreased by both pH 4.0 acid rain and pH 2.5 acid rain, while in Yangmai 16 only by pH 2.5 acid rain. Waterlogging combined with acid rain significantly reduced grain weight and grain yield in both wheat cultivars. Acid rain, waterlogging and their combination depressed activities of ADP glucose pyrophosphorylase and soluble starch synthase (SSS) in grains of both cultivars. Acid rain and waterlogging damaged endosperm cell structure and caused abnormal starch granules. Starch granules at maturity became fragile and failed to keep in shape and some granules were even totally submerged in the protein matrix and other tissue under acid rain and waterlogging. Content of amylopectin and amylopectin/amylose ratio was also decreased, while content of amylose was increased under acid rain and waterlogging. As a result, swelling power and most viscosity parameters decreased, while the pasting temperature increased in both cultivars due to stresses. In sum, acid rain and waterlogging and their combination damaged cell structure and depressed synthesis of amylopectin, and led to the formation of abnormal fragile starch granules, and finally reduced grain weight and then yield, and deteriorated starch quality.  相似文献   

13.
Weight of individual grains is a major yield component in wheat. The non-uniform distribution of single grain weight on a wheat spike is assumed to be closely associated with starch synthesis in grains. The present study was undertaken to determine if the enzymes involved in starch synthesis cause the differences in single grain weight between superior and inferior grains on a wheat spike. Using two high-yield winter wheat (Triticum aestivum L.) varieties differing in grain weight and three nitrogen rates for one variety, the contents of amylose and amylopectin, and activities of enzymes involved in starch synthesis in both superior and inferior grains were investigated during the entire period of grain filling. Superior grains showed generally higher starch accumulation rates and activities of enzymes including SS (sucrose synthase), UDPGPPase (UDP-glucose pyrophosphorylase), ADPGPPase (ADP-glucose pyrophosphorylase), SSS (soluble starch synthase) and GBSS (starch granule bound starch synthase) and subsequently produced much higher single grain weight than inferior grains. Nitrogen increased enzyme activities and starch accumulation rates, and thus improved individual grain weight, especially for inferior grains. The SS, ADPGPPase and SSS were significantly correlated to amylopectin accumulation, while SS, ADPGPPase, SSS and GBSS were significantly correlated to amylose accumulation. This infers that SS, ADPGPPase and starch synthase play key roles in regulating starch accumulation and grain weight in superior and inferior grains on a wheat spike.  相似文献   

14.
In rice (Oryza sativa L.), later flowering inferior spikelets (IS), which are located on proximal secondary branches, fill slowly and produce smaller and lighter grains than earlier flowering superior spikelets (SS). Many genes have been reported to be involved in poor grain filling of IS, however the underlying molecular mechanisms remain unclear. The present study determined that GF14f, a member of the 14‐3‐3 protein family, showed temporal and spatial differences in expression patterns between SS and IS. Using GF14f–RNAi plants, we observed that a reduction in GF14f expression in the endosperm resulted in a significant increase in both grain length and weight, which in turn improved grain yield. Furthermore, pull‐down assays indicated that GF14f interacts with enzymes that are involved in sucrose breakdown, starch synthesis, tricarboxylic acid (TCA) cycle and glycolysis. At the same time, an increase in the activity of sucrose synthase (SuSase), adenosine diphosphate‐glucose pyrophosphorylase (AGPase), and starch synthase (StSase) was observed in the GF14f–RNAi grains. Comprehensive analysis of the proteome and metabolite profiling revealed that the abundance of proteins related to the TCA cycle, and glycolysis increased in the GF14f–RNAi grains together with several carbohydrate intermediates. These results suggested that GF14f negatively affected grain development and filling, and the observed higher abundance of the GF14f protein in IS compared with SS may be responsible for poor IS grain filling. The study provides insights into the molecular mechanisms underlying poor grain filling of IS and suggests that GF14f could serve as a potential tool for improving rice grain filling.  相似文献   

15.
One hundred to 120 maize recombinant inbred lines at the mature fourth leaf stage derived from F-2 and Io parental lines were grown in a glasshouse and were deprived of water for 9 days in order to detect pertinent markers of the physiological response to water stress which may be used for breeding. Carbohydrate metabolism QTLs were compared to photosynthesis gas exchange QTLs. The locations of these QTLs were further compared with those of morphological trait QTLs when water availability varied. The traits ranged from three enzyme activities (invertase, sucrose-P synthase, ADP glucose pyrophosphorylase) and hexose, sucrose, starch content to CO2 uptake and stomatal conductance, water status, leaf size, root/shoot ratio, and ABA (leaf, root and xylem sap). Four main results were obtained (1) only 14 % of QTLs were common to both drought and watered treatments, confirming the existence of stress specific chromosome regions, (2) the QTLs tended to form clusters, frequently consisting of QTLs from different classes (growth, photosynthesis, water status, carbohydrate metabolism and ABA), (3) carbohydrate metabolism trait QTLs were more frequently co-located with growth trait QTLs than photosynthesis related ones, especially in control conditions, (4) one co-location was observed between the three enzyme activities implied in sucrose and starch metabolism and a corresponding structural gene, which can be considered as a candidate gene for explaining part of the variability of each enzymatic trait (invertase, sucrose-P synthase, ADPglucose pyrophosphorylase). It is concluded that, carbohydrate metabolism provides valuable traits for understanding and improving maize responses to water stress.  相似文献   

16.
Several lines of evidence indicate that the partitioning of photosynthate between starch and sucrose is influenced by the relative concentrations of inorganic phosphate (Pi) in the cytosol and chloroplast. Two greenhouse experiments were conducted to determine the influence of long-term differences in soil P levels, ranging from deficient to supraoptimum, on leaf starch and sucrose concentrations, and activities of adenosine diphosphate glucose (ADPG) pyrophosphorylase and sucrose-phosphate synthase (SPS) during the grain filling period in soybean (Glycine max [L.] Merr.). It was hypothesized that, compared with optimum P nutrition, leaf starch and sucrose concentrations would be increased and decreased, respectively, for P deficiency and visa versa for supraoptimum P nutrition. Relative to the optimum soil P level, leaf Pi concentration was not altered by P deficiency but was increased two- to fourfold for the supraoptimum soil P treatment. The concentrations of leaf starch and sucrose were not markedly affected by any of the P fertility treatments and were not closely related to the activities of ADPG pyrophosphorylase and SPS. P deficiency resulted in increased activity of both enzymes in one of the experiments. The results indicated that long-term soil P treatments, that caused either large decreases in plant growth (P deficiency) or large increases in leaf Pi concentration (supraoptimum P), did not markedly alter starch and sucrose metabolism. Furthermore, it can be inferred that the method of plant culture and/or imposition of the P treatments is a critical factor in interpreting results of P nutrition studies.  相似文献   

17.
18.
《Plant science》1987,52(3):153-157
Sucrose synthase (EC 2.4.1.13) was purified to homogeneity from developing maize (Zea mays L.) endosperm. Substrate saturation and inhibitor kinetics were examined for the sucrose synthase reaction. The Km-values for fructose and uridine diphosphate glucose (UDPGlc) were estimated to be 7.8 mM and 76 μM, respectively. Fructose concentrations over 20 mM inhibited sucrose synthase in an uncompetitive manner with respect to UDPGlc. Glucose was also found to be an uncompetitive inhibitor with respect to both fructose and UDPGlc. At inhibitory concentrations of fructose, the apparent Ki for glucose increased linearly with increasing fructose concentration. The results suggest an ordered kinetic mechanism for sucrose synthase where UDPGlc binds first and UDP dissociates last. Fructose and glucose both inhibit by binding to the enzyme-UDP complex. Fructose and glucose, which are present in maize endosperm as the products of invertase, could inhibit sucrose synthase, especially in basal regions of the kernel where hexosesmay accumulate.  相似文献   

19.
施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响   总被引:18,自引:4,他引:14  
在相同施钾量的基础上。采用一次性基施,1/2基施、1/2于拔节期追施。研究施钾时期对小麦旗叶光合特性和籽粒淀粉积累的影响.结果表明。分期施钾比一次性施钾提高了小麦开花后旗叶的光合速率、旗叶中磷酸蔗糖合成酶(SPS)和籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(ADPGPPase)的活性,提高了籽粒中蔗糖的供应强度和淀粉积累速率。增加了籽粒产量.研究还表明。两个施钾处理均提高了小麦叶片中蔗糖的合成能力和其在籽粒中转化为淀粉的能力,施钾提高产量的主要原因是施钾较好地协调了光合物质合成、运输与转化,即较好地协调了淀粉合成的源库关系.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号