首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Localization of epididymal secretory proteins on rat spermatozoa   总被引:4,自引:0,他引:4  
Spermatozoa from the testis and cauda epididymidis of the rat were surface labelled with radioactive iodide. Detergent extracts of radioiodinated spermatozoa immunoprecipitated with antisera against specific epididymal proteins, followed by polyacrylamide gel electrophoresis, revealed two proteins (D and E of Mr 27 000 and 28 000, respectively) which became associated with spermatozoa during epididymal transit. These proteins were observed by immunofluorescence microscopy to be located over a restricted area of the head surface. Proteins with similar molecular weight were labelled on spermatozoa from the cauda epididymidis, but not from the testis, by reaction with sodium boro[3H]hydride in the presence of galactose oxidase. However, failure to immunoprecipitate with antibodies to Proteins D and E and non-coincident migration on two-dimensional gel electrophoresis established the non-identity of these proteins. Compared with Proteins D and E, two other major epididymal secretory proteins (Proteins B and C of Mr 16 000) associated with spermatozoa to a relatively minor extent during epididymal transit.  相似文献   

2.
Prior exposure of immature rat testis to arginine vasopressin caused the testis refractory at 24 h in terms of ornithine decarboxylase activity. Arginine vasopressin caused desensitization both in Leydig cells and seminiferous tubules. Arginine vasopressin induced desensitization was found to be both time and dose-dependent. Arginine vasopressin desensitized testis was refractory to luteinizing hormone, follicle stimulating hormone, norepinephrine, dibutyryl cAMP, phorbol-myristate acetate and cholera toxin at 24 h. Arginine vasopressin desensitized testis showed recovery of response to norepinephrine at 48 h after the first injection. On the contrary arginine vasopressin could stimulate ornithine decarboxylase in luteinizing hormone desensitized testis. These results indicate that in arginine vasopressin desensitized testis the block is at post cAMP step which is common to both cAMP dependent and protein kinase C-diacylglycerol system in stimulating testicular ornithine decarboxylase.  相似文献   

3.
DH23A cells, an α-difluoromethylornithine (DFMO)–resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Summary The thymus of young rats contained a high basal activity of ornithine decarboxylase (ODC). Treatment with zinc sulphate caused a slight increase of thymic ODC activity within 6 hours and a more marked enhancement (three-fold) in the spleen 24 h after treatment. In spite of the high activity of thymic ODCin vivo, ODC was not detectable in primary cultures of rat thymocytes, but was early and largely induced after treatment with Concanavalin A (Con A). The presence of 0.1 mM zinc in the medium increased the response of ODC to Con A. This effect of zinc in mitogen activated thymocytes may be due to the stabilization of ODC, which was found to decay with a half life of 65 min after the block of protein synthesis with cycloheximide. On the contrary in absence of zinc the half life of the enzyme was 40 min, as in the rat thymus in vivo.Zinc alone, at 0.1 mM concentration, did not affect ODC activity in resting thymocytes during the early times, but the metal was able to cause an increase of the enzyme activity after 4–6 days of culture. Other heavy metals such as mercury, cadmium and copper provoked a late increase of ODC activity, but their action was evident only at dosages which were toxic for the cells.  相似文献   

5.
Intratesticular injection of prostaglandin E2 at a dose of 10 or 25 micrograms per testis caused desensitization of the testis to ornithine decarboxylase activity at 24 h after the injection. PGE2 caused desensitization in both Leydig cells and seminiferous tubules. The desensitized testis was refractory to follicle stimulating hormone, luteinizing hormone and cAMP in addition to PGE2. These results indicate that testicular desensitization to PGE2 is at a step beyond cAMP formation.  相似文献   

6.
7.
Polyamines are associated with fundamental metabolic and functional steps in cell metabolism. The activity of ornithine decarboxylase, the key enzyme in polyamine metabolism, was followed during the preparation of rat liver parenchymal cells and in the isolated cells during incubation. In experiments in which ornithine decarboxylase was not induced in vivo, enzyme activity dropped to barely measurable values during the preparation. An even more drastic loss of enzyme activity was noted in livers in which ornithine decarboxylase activity was stimulated in vivo 20-40fold by previous injection of bovine growth hormone, or thioacetamide or elevated because of circadian rhythmical changes of the enzyme activity. Within the first 20 min of liver perfusion to disintegrate the tissue, ornithine decarboxylase activity decreased by up to 80%. The presence of bovine growth hormone during cell preparation cannot prevent the loss of enzyme activity. Incubation of the isolated cells for periods of up to 240 min did not restore the enzyme activity. Furthermore, incubation of the cells with bovine growth hormone did not induce ornithine decarboxylase, even though the medium was supplemented with amino acids in physiological concentrations. During normal liver perfusion and in contrast to the situation with isolated cells, there is no loss of enzyme activity but a small rise. Following pretreatment of the animals with bovine growth hormone or thioacetamide the highly stimulated activity of ornithine decarboxylase declined slowly during liver perfusion, but never dropped to values lower than normal for perfusion periods of up to 240 min. Moreover, in the intact perfused organ ornithine decarboxylase remains responsive to bovine growth hormone. The experiments demonstrate that enzymatic tissue dispersion by collagenase in particular or the preparation of isolated cells in general drastically alters the metabolic and functional state of rat liver parenchymal cells.  相似文献   

8.
N-Monoacetylputrescine and N8-monoacetylspermidine, metabolites of the naturally occurring polyamines, activate the enzyme ornithine decarboxylase (ODC). When added to cultures of hepatoma (HTC) cells growing in log phase, in concentrations of 5×10?5M and 2.5×10?7M respectively, these substances cause a 3 to 5-fold increase in the activity of ODC with a peak effect at one hour. This previously undescribed stimulating effect is in sharp contrast to the well established suppressing effects of nonacetylated polyamines on ODC activity.  相似文献   

9.
Intratesticular injection with arginine vasopressin caused stimulation of ornithine decarboxylase activity in the testes of immature rats. The increase in ornithine decarboxylase activity in response to arginine vasopressin was dose and time dependent. Maximal stimulation of ornithine decarboxylase activity occurred at 2 h after injection with 0.1 micrograms of arginine vasopressin. It was observed that stimulation of ornithine decarboxylase activity occurred in seminiferous tubules and in Leydig cells of the testis in response to arginine vasopressin.  相似文献   

10.
11.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide.  相似文献   

12.
Said S  Han MS  Niwa K 《Theriogenology》2003,60(2):359-369
The possibility of obtaining normal development of rat oocytes following intracytoplasmic injection of rat sperm heads, obtained by sonicating spermatozoa from testes and epididymides, was evaluated. Irrespective of the source of spermatozoa, sperm heads were successfully injected into approximately 45% of oocytes used; after 9-12h of culture, approximately 55% of injected oocytes still had normal morphology. Of the oocytes injected with testicular sperm heads 45% were activated, with a female pronucleus and a second polar body, but significantly more oocytes (approximately 68%) injected with caput and cauda epididymal sperm heads were activated. Male pronuclear formation was observed in 67-84% of the activated oocytes, with no difference in the proportions among the different sources of sperm heads. When zygotes showing two pronuclei and a second polar body at 10h after injection were cultured in conditions that support development of 1-cell embryos produced in vivo, no embryos derived from testicular sperm heads developed to blastocysts after 120 h of culture. Development of embryos derived from cauda sperm heads was significantly higher at all points of assessment, while embryos from caput sperm showed an intermediate degree of development, compared with embryos from testicular spermatozoa. However, similar proportions (2-4%) of 1-cell embryos derived from all three groups of sperm heads developed into normal offspring after transfer to foster mothers; of the limited number of offspring tested, all were fertile. These results demonstrate that sperm heads from all sources tested are similar in their ability to contribute to full development of normal, fertile offspring.  相似文献   

13.
In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). By either the oral or the subcutaneous route, AIA produced a long-lasting induction (30 to 40 hours) of hepatic ODC activity. Three analogs of AIA, propylisopropylacetamide (PIA), allobarbital, and allylbenzene, were active ODC inducers while a fourth, allylacetate, was not. Although induction of hepatic aminolevulinic acid (ALA) synthetase activity and the accumulation of hepatic porphyrins depend on the allyl moiety of AIA, this is not the case with hepatic ODC induction. Allylisopropylacetamide did not elevate serum alanine aminotransferase (SGPT) nor did it cause DNA damage, as measured by the alkaline elution assay. Thus, hepatic cell death is not a likely explanation of AIA's long-lasting induction of ODC. As AIA does not belong to any of the common categories of ODC inducers, it may be the chemical prototype of a new class of hepatic ODC inducers.  相似文献   

14.
Summary The localization of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis and thus in cell growth, was determined in the 4.5-day-old chick embryo, using two independent methods of analysis. ODC protein was identified by indirect immunofluorescence with a monospecific ODC antibody, and catalytically active ODC was identified by autoradiography with -(5-3H) difluoromethylornithine. Both methods revealed a basically similar distribution of ODC within the embryo. Among the organs, the brain exhibited the highest ODC levels. ODC levels were also high in spinal cord, mesonephric tubules and heart. Similar levels, but confined to limited areas, were found in liver tissue, head mesenchyme, and the oral and pharyngeal regions. Organs that exhibited high ODC levels are all engaged in rapid growth, as well as in extensive tissue remodeling and differentiation.  相似文献   

15.
16.
17.
Ornithine decarboxylase (ODC) activity was measured in epididymides of 45-day-old rats. Higher ODC activity was detected in the corpus and cauda than in the caput epididymidis. Bilateral castration for 7 days caused epididymal ODC to fall to undetectable values, whereas testosterone restored activity to normal values. The effect of the androgen was significantly inhibited by cyproterone acetate. The caput was more sensitive to the action of testosterone than were the corpus and caudal segments. Unilateral castration for 4 or 8 days did not affect ODC on the control or castrated side, but the activity fell in epididymides of both sides after removal of the remaining testis. These results show that epididymal ODC activity is androgen-dependent.  相似文献   

18.
19.
A previous study has shown that the activity of ornithine decarboxylase in cultured Nb2 node rat lymphoma cells falls to undetectable levels when cells become quiescent following incubation in lactogen (prolactin)-deficient medium. In the present study, it was found that addition of extracts of the lactogen-deprived, quiescent cells to extracts of log-phase cells markedly reduced the ornithine decarboxylase activity of the latter, the inhibitory activity being proportional to the amount of quiescent cell extract added. Evidence is presented that the ornithine decarboxylase-inhibitory activity in the quiescent cell extracts is due to an antizyme-like, polypeptide factor with an Mr of approx. 28,000. The activity of the inhibitor appears to be directed rather specifically against ornithine decarboxylase, since the activities of S-adenosylmethionine decarboxylase, thymidine kinase and uridine kinase were not affected. The Nb2 cell ornithine decarboxylase inhibitor may have an important role in modulating the cellular levels of ornithine decarboxylase as they change in response to the withdrawal and restoration of extracellular mitogenic lactogens.  相似文献   

20.
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, was significantly induced in female rat liver following oral administration of the pesticide mirex. After dual oral exposure (120 mg/kg of mirex; 21 and 4 hr prior to sacrifice), ornithine decarboxylase activity in rat liver cytosol was 70-fold higher than control values. A single oral dose of mirex (180 mg/kg) induced hepatic ornithine decarboxylase activity 55-fold over controls. After a single oral dose of mirex the maximal induction of ODC activity occurred at 36 hr. Mirex is an unusually potent and long-lasting inducer of rat hepatic ornithine decarboxylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号