首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelsolin is a Ca2+-regulated actin-binding protein that can sever, cap, and nucleate growth from the pointed ends of actin filaments. In this study we have measured the binding of the amino-terminal half of gelsolin, G1-3, to pyrene-labeled F-actin as a function of Ca2+ concentration. The rate of binding is shown to be dependent on micromolar concentrations of Ca2+. Independent experiments demonstrate that conformational changes in G1-3 are induced by micromolar concentrations of Ca2+. Titrations of pyrene-F-actin with G1-3 and gelsolin show that the quenching of pyrene fluorescence is identical in extent and stoichiometry for both G1-3 and gelsolin. In contrast, severing of F-actin by G1-3 is found to be much less efficient than is severing by gelsolin. In experiments in which F-actin severing is quantitatively measured, the filament number is found to be proportional to the 1.35 power of the G1-3 concentration. This deviation from linearity may be explained by cooperativity; the binding of two G1-3 molecules in close proximity may lead to cooperative severing of the polymer, thus increasing the severing efficiency. This model is supported by experiments that show that the efficiency of G1-3 severing of F-actin increases with increasing G1-3:F-actin ratios. Extrapolating from these results, we conclude that G4-6, the carboxyl-terminal half of gelsolin, has an active role in the severing of F-actin by intact gelsolin. Whereas F-actin severing by G1-3 is enhanced by cooperative binding of two separate G1-3 molecules, cooperativity is inherent to intact gelsolin because the cooperative partners are covalently linked.  相似文献   

2.
Actin filaments, F-actin, a major component of the cortical cytoskeleton, play an important role in a variety of cell functions. In this report we have assessed the role of osmotic stress on the electrochemical properties of F-actin. The spontaneous Donnan potential of a polymerized actin solution (5 mg/ml) was -3.93 +/- 1.84 mV, which was linearly reduced by osmotic stress on the order of 1-20 mOsm (0.28 +/- 0.06 mV/mM). Calculated surface charge density was reduced and eventually reversed by increasing the osmotic stress as expected for a phase transition behavior. The electro-osmotic behavior of F-actin disappeared at pH 5.5 and was dependent on its filamentous nature. Furthermore, osmotically stressed F-actin displayed a nonlinear electric response upon application of electric fields on the order of 500-2,000 V/cm. These data indicate that F-actin in solution may display nonideal electro-osmotic properties consistent with ionic "cable" behavior which may be of biological significance in the processing and conduction of electrical signals within the cellular compartment.  相似文献   

3.
Low concentrations of actin filaments (F-actin) inhibit the rate and extent of turbidity developed during polymerization of purified fibrinogen by thrombin. Actin incorporates into the fibrin clot in a concentration-dependent manner that does not reach saturation, indicating nonspecific trapping of actin filaments in the fibrin network. Actin does not retard activation of fibrinogen by thrombin, but rather the alignment of fibrin protofibrils into bundles which constitute the coarse clot. In contrast, equivalent F-actin concentrations have little or no effect on the turbidity of plasma clots. The difference is attributed to the presence of a plasma protein, gelsolin, that severs actin filaments. Purified gelsolin greatly reduces the effect of F-actin on the turbidity of a pure fibrin clot and decreases the fraction of actin incorporated by the clot. A calculation of the extent to which the gelsolin concentrations used in these experiments reduce the fraction of actin filaments which are long enough to impede each other's rotational diffusion indicates that it is the overlapping actin filaments which retard the association of fibrin protofibrils. The findings suggest that one role for the F-actin depolymerizing and particularly actin severing activities in blood is to prevent actin filaments released by tissue injury from interfering with the formation of coarse fibrin clots.  相似文献   

4.
Viscoelasticity of F-actin and F-actin/gelsolin complexes   总被引:7,自引:0,他引:7  
Actin is the major protein of eukaryote peripheral cytoplasm where its mechanical effects could determine cell shape and motility. The mechanical properties of purified F-actin, whether it is a viscoelastic fluid or an elastic solid, have been a subject of controversy. Mainstream polymer theory predicts that filaments as long as those found in purified F-actin are so interpenetrated as to appear immobile in measurements over a reasonable time with available instrumentation and that the fluidity of F-actin could only be manifest if the filaments were shortened. We show that the static and dynamic elastic moduli below a critical degree of shear strain are much higher than previously reported, consistent with extreme interpenetration, but that higher strain or treatment with very low concentrations of the F-actin severing protein gelsolin greatly diminish the moduli and cause F-actin to exhibit rheologic behavior expected for independent semidilute rods, and defined by the dimensions of the filaments, including shear rate independent viscosity below a critical shear rate. The findings show that shortening of actin filaments sufficiently to permit reasonable measurements brings out their viscoelastic fluid properties. Since gelsolin shortens F-actin, it is likely that the effect of high strain is also to fragment a population of long actin filaments. We confirmed recent findings that the viscosity of F-actin is inversely proportional to the shear rate, consistent with an indeterminate fluid, but found that gelsolin abolishes this unusual shear rate dependence, indicating that it results from filament disruption during the viscosity measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The interaction of pig plasma gelsolin with F-actin has been studied by a sedimentation assay using 125I-gelsolin in a Beckman Airfuge. Over 90% of the gelsolin bound to F-actin in 0.1 mM CaCl2 in experiments using 24 microM actin and 2-10 nM 125I-gelsolin, but only 40-50% bound in 1 mM EGTA. Addition of more F-actin to the EGTA supernatant does not sediment this gelsolin. Demonstration of this partial calcium sensitivity depends critically on the use of F-actin that has been prepared in the absence of calcium ions. F-actin prepared from G-actin in calcium or pretreated with calcium, binds 125I-gelsolin more completely in EGTA. This suggests that gelsolin activity is influenced by transient exposure of actin to calcium. Further evidence for partial calcium sensitivity in the interactions between gelsolin and F-actin has been obtained by other methods, including viscometry and electron microscopy. The gelsolin present in the EGTA supernatant is complexed to G-actin, predominantly as binary complexes. Very low concentrations of these complexes reduce the viscosity of F-actin in calcium but not in EGTA. Whether this effect is due to severing activity, or capping with consequent depolymerization to establish the new critical concentration, is uncertain. The results suggest the presence of two types of gelsolin, one that requires micromolar concentrations of calcium for binding to F-actin and one that does not. Both bind to G-actin. Partial separation has been achieved using actin-Sepharose. Pig plasma gelsolin is heterogeneous on isoelectric focussing gels in urea, but the two types of gelsolin separated on actin-Sepharose do not correspond to specific isoelectric species.  相似文献   

6.
Plasma volume, hematocrit, intravascular protein concentration, colloid osmotic pressure and the intravascular mass of proteins were measured in 49 sedentary subjects and 40 endurance athletes (long-, middle distance runners, cyclists). The plasma volume in sedentary subjects was 42.7(35.8-51.7) ml/kg body weight (BW) as compared to 54.6(46.7-65.9) ml/kg BW in athletes. The protein concentrations were 71.0 (66.5-77.1) g/l in sedentary subjects and 69.0 (64.8-75.2) g/l in athletes. The respective numbers for the hematocrit were 44.6 (40.1-49.25)% and 42.8 (38.2-49.6)%, for the colloid osmotic pressure 38.0 (36.0-40.5) cm H2O (n=35) and 30.0 (25.0-34.4) cm H2O (n=31), for the intravascular mass of proteins 3.09 (2.45-4.01) g/kg BW and 3.75 (3.31-4.67) g/kg BW. All differences were statistically significant at least on the 5% level. The physiological consequences for athletes of having a lower hematocrit and lower protein concentration but a higher intravascular mass of proteins (+22%) for their waterbalance as well as for their dietary protein intake are discussed. Endurance exercise stimulates mainly the synthesis of albumin and globulins produced by the liver resulting in an expansion of the PV. The protein synthesis of the RES does not seem to respond to exercise stimulus.  相似文献   

7.
Lung volumes and static lung compliance were measured in decapitated three day-old neonatal Long Evans' rat pups. Compliance was measured in situ (open chest method) using a water manometer and syringe system. Mean total lung capacity at 20 cm H2O pressure (TLC20) was 0.678 ml. Minimum lung volume after experimental inflation was 0.197 +/- 0.048 ml, and vital capacity was 0.56 ml (Vmax20). The mean lung compliance value for the approximate tidal loop (between 3 and 12 cm H2O) equalled 26.2 microliters air/cm H2O for the inflation limb and 23.1 microliters/cm H2O for the deflation limb.  相似文献   

8.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

9.
We determined the effect of albumin on endothelial hydraulic conductivity (Lp) and the contributions of the positively charged arginyl and lysinyl residues of albumin in mediating the effect. Studies were made using monolayers of cultured sheep pulmonary artery endothelial cells grown to confluence on polycarbonate filters. Water flux was measured as transendothelial hydrostatic pressure was varied from 5 to 20 cm H2O. Lp was calculated from the slope of the relationship of water flux versus pressure. The Lp of endothelial monolayers perfused with albumin-free Hanks Balanced Salt Solution (HBSS) was compared to perfusion with HBSS containing either native albumin, or albumin in which the arginyl residues were modified by a condensation reaction with 1,2-cyclohexanedione (CHD-albumin), or albumin in which the lysinyl residues were modified by a substitution reaction with succinic anhydride (SC-albumin). Baseline Lp at 2.5 mg/ml native albumin was 1.6 +/- 0.1 X 10(-6) cm/s/cm H2O compared to the filter Lp after removing cells of 3.0 +/- 0.3 X 10(-4) cm/s/cm H2O. Endothelial Lp increased by 60% when albumin concentration was decreased from 2.5 mg/ml to 0.5 mg/ml (P less than 0.05), but did not change with an increase in concentration to 10 mg/ml. Albumin-free buffer and CHD-albumin increased endothelial Lp by 2.2 +/- 0.3-fold and 1.9 +/- 0.3-fold, respectively (P less than 0.05). All endothelial Lp values were restored to baseline when the native albumin concentration was returned to 2.5 mg/ml. Excess l-arginine (2 X 10(-3) M) inhibited the effect of native albumin and increased endothelial Lp 1.5 +/- 0.02-fold (P less than 0.05), but excess l-lysine (4 X 10(-3) in the presence of native albumin had no effect on Lp. None of the perfusates altered the filter Lp value. Neutral dextran (70 kD), in contrast to native albumin, had no effect on endothelial Lp. These results indicate that albumin reduces the hydraulic conductivity of endothelial monolayers in a concentration-dependent fashion and that the arginyl residues of albumin are required for the response. The effect of albumin may be mediated by a charge interaction of albumin with the endothelium.  相似文献   

10.
《The Journal of cell biology》1985,101(4):1236-1244
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.  相似文献   

11.
Study of actin filament ends in the human red cell membrane   总被引:7,自引:0,他引:7  
There is conflicting evidence concerning the state of the actin protofilaments in the membrane cytoskeleton of the human red cell. To resolve this uncertainty, we have analysed their characteristics with respect to nucleation of G-actin polymerization. The effects of cytochalasin E on the rate of elongation of the protofilaments have been measured in a medium containing 0.1 M-sodium chloride and 5 mM-magnesium chloride, using pyrene-labelled G-actin. At an initial monomer concentration far above the critical concentration for the negative ("pointed") end of F-actin, high concentrations of cytochalasin reduce the elongation rate of free F-actin by about 70%. The residual rate is presumed to correspond to the elongation rate at the negative ends. By contrast, the elongation rate on red cell ghosts or cytoskeletons falls to zero, allowing for the background of self-nucleated polymerization of the G-actin. The critical concentration of the actin in the red cell membrane has been measured after elongation of the filaments by added pyrenyl-G-actin in the same solvent. It was found to be 0.07 microM, compared with 0.11 microM under the same conditions for actin alone. This is consistent with prediction for the case of blocked negative ends on the red cell actin. The rate of elongation of actin filaments, free and in the red cell membrane cytoskeleton, has been measured as a function of the concentration of an added actin-capping protein, plasma gelsolin, with a high affinity for the positive ends. The elongation rate falls linearly with increasing gelsolin concentration until it approaches a minimum when the gelsolin has bound to all positive filament ends. The elongation rate at this point corresponds to the activity of the negative ends, and its ratio to the unperturbed polymerization rate (in the absence of capping proteins) is indistinguishable from zero in the case of ghosts, but about 1 : 4 in the case of F-actin. When ATP is replaced in the system by ADP, so that the critical concentrations at the two filament ends are equalized, the difference is equally well-marked: for F-actin, the rate at the equivalence point is about 40% of that in the absence of capping protein, whereas for ghosts the nucleated polymerization rate at the equivalence point is again zero, indicating that under these conditions the negative ends contribute little or not at all to the rate of elongation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The lower inflection point (LIP) on the total respiratory system pressure-volume (P-V) curve is widely used to set positive end-expiratory pressure (PEEP) in patients with acute respiratory failure (ARF) on the assumption that LIP represents alveolar recruitment. The aims of this work were to study the relationship between LIP and recruited volume (RV) and to propose a simple method to quantify the RV. In 23 patients with ARF, respiratory system P-V curves were obtained by means of both constant-flow and rapid occlusion technique at four different levels of PEEP and were superimposed on the same P-V plot. The RV was measured as the volume difference at a pressure of 20 cm H(2)O. A third measurement of the RV was done by comparing the exhaled volumes after the same distending pressure of 20 cm H(2)O was applied (equal pressure method). RV increased with PEEP (P < 0.0001); the equal pressure method compares favorably with the other methods (P = 0.0001 by correlation), although individual data cannot be superimposed. No significant difference was found when RV was compared with PEEP in the group of patients with a LIP < or =5 cm H(2)O and the group with a LIP >5 cm H(2)O (76.9 +/- 94.3 vs. 61.2 +/- 51.3, 267.7 +/- 109.9 vs. 209.6 +/- 73.9, and 428.2 +/- 216.3 vs. 375.8 +/- 145.3 ml with PEEP of 5, 10, and 15 cm H(2)O, respectively). A RV was found even when a LIP was not present. We conclude that the recruitment phenomenon is not closely related to the presence of a LIP and that a simple method can be used to measure RV.  相似文献   

13.
E Grazi  E Magri  P Cuneo  A Cataldi 《FEBS letters》1991,295(1-3):163-166
Solation of actin gel by gelsolin is much less efficient in the presence of a high concentration of macromolecular solutes. The rigidity of the gel formed by 12 microM actin is lowered from 4 to 0.33 dynes/cm2 by 15 nM gelsolin, while in 6% (w/v) polyethylene glycol, rigidity is lowered only from 20 to 11 dynes/cm2 by 64 nM gelsolin. Owing to the large concentration of protein, transitions in the fluid- and gel-like properties of the cytoplasm are expected to be problematic when promoted by gelsolin alone.  相似文献   

14.
We investigated the effect of IL-2 in the isolated guinea pig lung perfused with phosphate-buffered Ringer's solution (containing 0.5 g/100 ml albumin and 5.5 mM dextrose) to determine the mechanism of IL-2-induced pulmonary edema. IL-2 (0 to 10,000 U/ml) was added to the perfusate following a 10 min baseline steady-state period. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight (as a measure of developing pulmonary edema) were recorded at 0, 10, 30, 40, and 60 min. The capillary filtration coefficient (Kf.c), an index of vascular permeability to water, was measured at 30 and 60 min. Infusion of IL-2 increased Ppc (from 3.9 +/- 0.1 cm H2O at baseline to 8.8 +/- 1.1 cm H2O at 60 min for IL-2 at 2000 U/ml, p less than 0.01; and from 3.8 +/- 0.1 cm H2O at baseline to 8.9 +/- 0.6 cm H2O at 60 min for IL-2 at 10,000 U/ml, p less than 0.01. The lung weight also increased (32% at IL-2 concentration of 2000 U/ml, and 26% at IL-2 concentration of 10,000 U/ml) The capillary filtration coefficient did not change with IL-2 infusion. The IL-2 response was prevented using the pulmonary vasodilator, papaverine. The infusion of IL-2 was associated with the generation of thromboxane A2(TxA2) in the effluent perfusate. Inhibition of TxA2 synthetase using Dazoxiben prevented the pulmonary vasoconstriction and edema response to IL-2. In addition, IL-2 had no effect on the transendothelial clearance of 125I-albumin. The results indicate that IL-2 causes pulmonary edema secondary to an increase in Ppc. The response is mediated by IL-2 stimulation of TxA2 generation from the lung.  相似文献   

15.
The crystal structure of the F-actin binding domain 2 of severin, the gelsolin homologue from Dictyostelium discoideum, has been determined by multiple isomorphous replacement and refined to 1.75 A resolution. The structure reveals an alpha-helix-beta-sheet sandwich similar to the domains of gelsolin and villin, and contains two cation-binding sites, as observed in other domain 1 and domain 2 homologues. Comparison of the structures of several gelsolin family domains has identified residues that may mediate F-actin binding in gelsolin domain 2 homologues. To assess the involvement of these residues in F-actin binding, three mutants of human gelsolin domain 2 were assayed for F-actin binding activity and thermodynamic stability. Two of the mutants, RRV168AAA and RLK210AAA, demonstrated a lowered affinity for F-actin, indicating a role for those residues in filament binding. Using both structural and biochemical data, we have constructed a model of the gelsolin domain 1-domain 2-F-actin complex. This model highlights a number of interactions that may serve as positive and negative determinants of filament end- and side-binding.  相似文献   

16.
F-actin purified from rabbit skeletal muscle undergoes reversible dissociation when subjected to hydrostatic pressures up to 240 MPa. Dissociation and reversibility were detected by the following procedures: fluorescence spectral changes observed under pressure, when either intrinsic tryptophan or pyrenyl emission of N-(1-pyrenyl)iodoacetamide-labeled actin were monitored; electron microscopy of samples fixed under pressure; size-exclusion HPLC of pressurized actin. The effect of pressure upon F-actin that had been polymerized in the presence of either Mg2+, Ca2+ or K+ was studied. The standard volume changes for the association of actin subunits, calculated from pressure/dissociation curves were 74 +/- 14 ml/mol for Mg-F-actin, 79 +/- 12 ml/mol for Ca-F-actin and 328 +/- 63 ml/mol for K-F-actin, indicating that actin subunits are packed differently in the polymer depending on which cation is present. All pressure/dissociation data could be fitted by a model for dissociation of a dimer, which suggests that in the F-actin filament there is a predominant intersubunit interaction interface, most likely the head-to-tail intrastrand interaction between two subunits which repeats itself along the polymer. A tenfold change in total protein concentration from 20 micrograms to 200 micrograms/ml Mg-F-actin did not cause a change in the pressure required for half-maximal dissociation. This indicates a heterogeneity of free energy of association among actin monomers in the Mg-F-actin polymer, suggesting that, in addition to the predominant intersubunit interaction, the disordered interactions in the filament significantly contribute to the heterogeneity of microenvironments in the interface between the subunits.  相似文献   

17.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

18.
We elucidated the mechanism by which gelsolin, a Ca2+-dependent regulatory protein from lung macrophages, controls the network structure of actin filaments. In the presence of micromolar Ca2+, gelsolin bound Ca2+. The Ca2+-gelsolin complex reduced the apparent viscosity and flow birefringence of F-actin and the lengths of actin filaments viewed in the electron microscope. However, concentrations of gelsolin causing these alterations did not effect proportionate changes in the turbidity of actin filament solutions or in the quantity of nonsedimentable actin as determined by a radioassay. From these findings, we conclude that gelsolin shortens actin filaments without net depolymerization. Such an effect on the distribution of actin filament lengths led to the prediction that low concentrations of gelsolin would increase the critical concentration of actin-binding protein required for incipient gelation of actin filaments in the presence of Ca2+, providing an efficient mechanism for controlling actin network structure. We verified the prediction experimentally, and we estimated that the Ca2+-gelsolin complex effectively breaks the bond between actin monomers in filaments with a stoichiometry of 1:1. The effect of Ca2+-gelsolin complex on actin solation was rapid, independent of temperature between 0 degrees and 37 degrees C, and reversed by reducing the free Ca2+ concentration.  相似文献   

19.
《The Journal of cell biology》1984,98(6):1919-1925
Physarum profilin reduces the rates of nucleation and elongation of F- actin and also reduces the extent of polymerization of actin at the steady state in a concentration-dependent fashion. The apparent critical concentration for polymerization of actin is increased by the addition of profilin. These results can be explained by the idea that Physarum profilin forms a 1:1 complex with G-actin and decreases the concentration of actin available for polymerization. The dissociation constant for binding of profilin to G-actin is estimated from the kinetics of polymerization of G-actin and elongation of F-actin nuclei and from the increase of apparent critical concentration in the presence of profilin. The dissociation constants for binding of Physarum profilin to Physarum and muscle actins under physiological ionic conditions are in the ranges of 1.4-3.7 microM and 11.3-28.5 microM, respectively. When profilin is added to an F-actin solution, profilin binds to G-actin which co-exists with F-actin, and then G- actin is dissociated from F-actin to compensate for the decrease of the concentration of free G-actin and to keep it constant at the critical concentration. At the steady state, free G-actin of the critical concentration is in equilibrium not only with F-actin but also with profilin-G-actin complex. The stoichiometry of 1:1 for the formation of complex between profilin and G-actin is directly shown by means of chemical cross-linking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号