首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The C function in Arabidopsis, which specifies stamen and carpel identity, is represented by a single gene called AGAMOUS (AG). From both petunia and cucumber, two MADS box genes have been isolated. Both share a high degree of amino acid sequence identity with the Arabidopsis AG protein. Their roles in specifying stamen and carpel identity have been studied by ectopic expression in petunia, resulting in plants with different floral phenotypes. Cucumber MADS box gene 1 (CUM1) induced severe homeotic transformations of sepals into carpelloid structures and petals into stamens, which is similar to ectopic AG expression in Arabidopsis plants. Overexpression of the other cucumber AG homolog, CUM10, resulted in plants with partial transformations of the petals into antheroid structures, indicating that CUM10 is also able to promote floral organ identity. From the two petunia AG homologs pMADS3 and Floral Binding Protein gene 6 (FBP6), only pMADS3 was able to induce homeotic transformations of sepals and petals. Ectopic expression of both pMADS3 and FBP6, as occurrs in the petunia homeotic mutant blind, phenocopies the pMADS3 single overexpresser plants, indicating that there is no additive effect of concerted expression. This study demonstrates that in petunia and cucumber, multiple AG homologs exist, although they differ in their ability to induce reproductive organ fate.  相似文献   

2.
Bai SL  Peng YB  Cui JX  Gu HT  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2004,220(2):230-240
To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

3.
4.
Class B floral homeotic genes play a key role in specifying the identity of male reproductive organs (stamens) and petals during the development of flowers. Recently, close relatives (orthologues) of these genes have been found in diverse gymnosperms, the sister group of the flowering plants (angiosperms). The fact that such genes have not been found so far, despite considerable efforts, in mosses, ferns or algae, has been taken as evidence to suggest that B genes originated 300–400 million years ago in a lineage that led to extant seed plants. Gymnosperms do not develop petals, and their male reproductive organs deviate considerably from angiosperm stamens. So what is the function of gymnosperm B genes? Recent experiments revealed that B genes from diverse extant gymnosperms are exclusively expressed in male reproductive organs (microsporophylls). At least for some of these genes it has been shown that they can partially substitute for the Arabidopsis B genes AP3 and PI in ectopic expression experiments, or even partially substitute these genes in different class B floral organ identity gene mutants. This functional complementation, however, is restricted to male organ development. These findings strongly suggest that gymnosperm and angiosperm B genes have highly related interaction partners and equivalent functions in the male organs of their different host species. It seems likely that in extant gymnosperms B genes have a function in specifying male reproductive organs. This function was probably established already in the most recent common ancestor of extant gymnosperms and angiosperms (seed plants) 300 million years ago and thus represents the ancestral function of seed plant B genes, from which other functions (e.g., in specifying petal identity) might have been derived. This suggests that the B gene function is part of an ancestral sex determination system in which B gene expression specifies male reproductive organ development, while the absence of B gene expression leads to the formation of female reproductive organs. Such a simple switch mechanism suggests that B genes might have played a central role during the origin of flowers. In the out-of-male and out-of-female hypotheses changes in B gene expression led to the origin of hermaphroditic flower precursors out of male or female gymnosperm reproductive cones, respectively. We compare these hypotheses with other recent molecular hypotheses on the origin of flowers, in which C/D and FLORICAULA/LEAFY-like genes is given a more prominent role, and we suggest how these hypotheses might be tested in the future.  相似文献   

5.
6.
? An important evolutionary mechanism shaping the biodiversity of flowering plants is the transfer of function from one plant organ to another. To investigate whether and how transference of function is associated with the remodeling of the floral organ identity program we studied Davidia involucrata, a species with conspicuous, petaloid bracts subtending a contracted inflorescence with reduced flowers. ? A detailed ontogeny enabled the interpretation of expression patterns of B-, C- and E-class homeotic MADS-box genes using qRT-PCR and in situ hybridization techniques. We investigated protein-protein interactions using yeast two-hybrid assays. ? Although loss of organs does not appear to have affected organ identity in the retained organs of the reduced flowers of D. involucrata, the bracts express the B-class TM6 (Tomato MADS box gene 6) and GLOBOSA homologs, but not DEFICIENS, and the C-class AGAMOUS homolog, representing a subset of genes also involved in stamen identity. ? Our results may illustrate how petal identity can be partially transferred outside the flower by expressing a subset of stamen identity genes. This adds to the molecular mechanisms explaining the diversity of plant reproductive morphology.  相似文献   

7.
In order to study the molecular regulation of flower development in the monoecious species oil palm (Elaeis guineensis), cDNAs of 12 MADS box genes from this plant belonging to seven distinct subfamilies were previously isolated and characterized. Here studies carried out on five of these genes, each likely to be involved in floral morphogenesis: EgSQUA1 (SQUAMOSA subfamily); EgAGL2-1 (AGL2 subfamily); EgGLO2 (GLOBOSA subfamily); EgDEF1 (DEFICIENS subfamily); and EgAG2 (AGAMOUS subfamily), are described. In order to determine where and when in the plant these genes are likely to function, their spatial and temporal patterns of expression were studied during the development of male and female inflorescences, either of normal phenotype or displaying a homeotic flowering abnormality known as mantled. In parallel, the phenotypic effects of ectopically expressing these genes in transgenic Arabidopsis thaliana plants were analysed. The data suggest a broad conservation of floral homeotic gene functions between oil palm and previously described model species, although a few minor variations in the zones of activity of certain genes cannot be excluded. The data also indicate distinct molecular identities for the morphologically similar floral organs of whorls 1 and 2. They also reveal reduced expression of putative B, C/D, and E class genes in mantled flowers, which undergo a homeotic transformation comparable to B class mutants of model species.  相似文献   

8.
In vitro propagation of oil palm (Elaeis guineensis Jacq.) frequently induces a somaclonal variant called ‘mantled’ abnormality, in which the stamens of both male and female flowers are transformed into carpels. This leads to a reduced yield or complete loss of the harvest of palm oil. The high frequency of the abnormality in independent lines and the high reversal rate suggest that it is due to an epigenetic change. The type of morphological changes suggest that it involves homeotic MADS box genes that regulate the identity of the flower whorls. We have isolated a number of MADS box genes from oil palm inflorescences by a MADS box-directed mRNA display approach. The isolated partial cDNAs included genes that were likely to function at the initial stages of flowering as well as genes that may function in determination of the inflorescence and the identity of the flower whorls. For four genes that were homologous to genes known to affect the reproductive parts of the flower, full length cDNAs were isolated. These were a B-type MADS box gene which may function in the determination of stamen formation, a C-type gene expected to be involved in stamen and carpel formation, and two putative SEP genes which act in concert with the A-, B- and C-type MADS box gene in determining flower whorl formation. The B-type gene EgMADS16 was functionally characterized as a PISTILLATA orthologue; it was able to complement an Arabidopsis thaliana pi mutant. Whether EgMADS16, or any of the other EgMADS genes, are functionally involved in the mantled condition remains to be established.  相似文献   

9.
10.
11.
AIMS: In this article a review is made of data recently obtained on the structural diversity and possible functions of MADS box genes in the determination of flower structure in the African oil palm (Elaeis guineensis). MADS box genes play a dominant role in the ABC model established to explain how floral organ identity is determined in model dicotyledon species such as Arabidopsis thaliana and Antirrhinum majus. In the monocotyledons, although there appears to be a broad general conservation of ABC gene functions, the model itself needs to be adapted in some cases, notably for certain species which produce flowers with sepals and petals of similar appearance. For the moment, ABC genes remain unstudied in a number of key monocot clades, so only a partial picture is available for the Liliopsida as a whole. The aim of this article is to summarize data recently obtained for the African oil palm Elaeis guineensis, a member of the family Arecaceae (Arecales), and to discuss their significance with respect to knowledge gained from other Angiosperm groups, particularly within the monocotyledons. SCOPE: The essential details of reproductive development in oil palm are discussed and an overview is provided of the structural and functional characterization of MADS box genes likely to play a homeotic role in flower development in this species. CONCLUSIONS: The structural and functional data provide evidence for a general conservation of the generic 'ABC' model in oil palm, rather than the 'modified ABC model' proposed for some other monocot species which produce homochlamydeous flowers (i.e. with morphologically similar organs in both perianth whorls), such as members of the Liliales. Our oil palm data therefore follow a similar pattern to those obtained for other Commelinid species in the orders Commelinales and Poales. The significance of these findings is discussed.  相似文献   

12.
We have identified a novel petunia MADS box gene, PETUNIA FLOWERING GENE (PFG), which is involved in the transition from vegetative to reproductive development. PFG is expressed in the entire plant except stamens, roots and seedlings. Highest expression levels of PFG are found in vegetative and inflorescence meristems. Inhibition of PFG expression in transgenic plants, using a cosuppression strategy, resulted in a unique nonflowering phenotype. Homozygous pfg cosuppression plants are blocked in the formation of inflorescences and maintain vegetative growth. In these mutants, the expression of both PFG and the MADS box gene FLORAL BINDING PROTEIN26 (FBP26), the putative petunia homolog of SQUAMOSA from Antirrhinum, are down-regulated. In hemizygous pfg cosuppression plants initially a few flowers are formed, after which the meristem reverts to the vegetative phase. This reverted phenotype suggests that PFG, besides being required for floral transition, is also required to maintain the reproductive identity after this transition. The position of PFG in the hierarchy of genes controlling floral meristem development was investigated using a double mutant of the floral meristem identity mutant aberrant leaf and flower (alf) and the pfg cosuppression mutant. This analysis revealed that the pfg cosuppression phenotype is epistatic to the alf mutant phenotype, indicating that PFG acts early in the transition to flowering. These results suggest that the petunia MADS box gene, PFG, functions as an inflorescence meristem identity gene required for the transition of the vegetative shoot apex to the reproductive phase and the maintenance of reproductive identity.  相似文献   

13.
14.
The function of the petunia MADS box gene fbp2 in the control of floral development has been investigated. Inhibition of fbp2 expression in transgenic plants by a co-suppression approach resulted in the development of highly aberrant flowers with modified whorl two, three and four organs. This mutant flower phenotype inherited as a single Mendelian trait. The flowers possess a green corolla which is reduced in size. Furthermore, the stamens are replaced by green petaloid structures and the inner gynoecial whorl is dramatically reduced. No ovules or placenta are formed and instead two new inflorescences developed in the axils of the carpels. These homeotic transformations are accompanied by a complete down-regulation of the petunia MADS box gene fbp6 which is highly homologous to the Arabidopsis and Antirrhinum genes agamous (ag) and plena (ple). In contrast to this, two other petunia MADS box genes, exclusively expressed in whorls two and three, are still transcribed. Our results indicate that the fbp2 gene belongs to a new class of morphogenesis genes involved in the determination of the central part of the generative meristem.  相似文献   

15.
Class B floral homeotic genes are involved in specifying stamen and petal identity in angiosperms (flowering plants). Here we report that gymnosperms, the closest relatives of the angiosperms, contain at least two different clades representing putative orthologues of class B genes, termed GGM2-like and DAL12-like genes. To obtain information about the functional conservation of the class B genes in seed plants, the representative of one of these clades from Gnetum, termed GGM2, was expressed under the control of the CaMV 35S promoter in Arabidopsis wild-type plants and in different class B mutants. In wild-type plants and in a conditional mutant grown at a permissive temperature, gain-of-function phenotypes were obtained in whorls 1 and 4, where class B genes are usually not expressed. In contrast, loss-of-function phenotypes were observed in whorls 2 and 3, where class B genes are expressed. In different class B gene null mutants of Arabidopsis, and in the conditional B mutant grown at the non-permissive temperature, a partial complementation of the mutant phenotype was obtained. In situ hybridization studies and class B gene promoter test fusion experiments demonstrated that the gain-of-function phenotypes are not due to an upregulation of the endogenous B genes from Arabidopsis, and hence probably involve interactions between GGM2 protein homodimers and class B protein target genes other than the Arabidopsis class B genes itself. To our knowledge, this is the first time that partial complementation of a homeotic mutant by an orthologous gene from a distantly related species has been reported. These data suggest that GGM2 has a function in the gymnosperm Gnetum which is related to that of class B floral organ identity genes of angiosperms. That function may be in the specification of male reproductive organ identity, and in distinguishing male from female reproductive organs.  相似文献   

16.
Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid synthases (CsACSs). However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein–DNA interaction assays, and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signaling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female–male determination and female–bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.

A key regulator promotes female flower development by triggering a positive feedback loop during cucumber sex determination.  相似文献   

17.
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.  相似文献   

18.
CaMADS1 is a floral-specific MADS box gene of hazelnut (Corylus avellana) which, according to its sequence and expression pattern, belongs to the AGAMOUS gene sub-family. To investigate whether CaMADS1 plays a role in specifying stamen and carpel identity, this gene was ectopically expressed in Arabidopsis. The constitutive expression of CaMADS1 in transgenic plants produced the homeotic conversion of first and second whorl organs: the first whorl exhibited carpelloid sepals and the second whorl showed staminoid features. This was expected on the basis of the ABC model, according to which ectopic expression of a functional AGAMOUS (a gene of class C) orthologue would suppress the A class homeotic function in the first and second whorls, leading to transformation of these whorls into carpels and stamen, respectively. These results indicate a functional equivalency between AGAMOUS and CaMADS1, for which CaMADS1 might behave like a class C homeotic gene, controlling the determination of stamen and carpel identity in hazelnut Received: 31 July 2000 / Revision accepted: 28 September 2000  相似文献   

19.
We have used Gerbera hybrida (the cultivated ornamental, gerera) to investigate the molecular basis of flower development in Asteraceae, a family of flowering plants that have heteromorphic flowers and specialized floral organs. Flowers of the same genotype may differ in a number of parameters, including sex expression, symmetry, sympetaly and pigmentation. In order to study the role of organ identity determination in these phenomena we isolated and functionally analysed six MADS box genes from gerbera; these were shown by phylogenetic analysis to be orthologous to well characterized regulatory genes described from Arabidopsis and Antirrhinum. Expression analysis suggests that the two gerbera agamous orthologues, the globosa orthologue and one of the deficiens orthologues may have functional equivalency to their counterparts, participating in the C and B functions, respectively. However, the function of a second deficiens orthologue appears unrelated to the B function, and that of a squamosa orthologue seems distinct from squamosa as well as from the A function. The induction patterns of gerbera MADS box genes conform spatiotemporally to the multi-flowered, head-like inflorescence typical of Asteraceae. Furthermore, gerbera plants transgenic for the newly isolated MADS box genes shed light onto the mechanistic basis for some floral characteristics that are typical for Asteraceae. We can conclude, therefore, that the pappus bristles are sepals highly modified for seed dispersal, and that organ abortion in the female marginal flowers is dependent upon organ identity and not organ position when position is homeotically altered.  相似文献   

20.
Multiple interactions amongst floral homeotic MADS box proteins.   总被引:23,自引:1,他引:22       下载免费PDF全文
Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号