首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.  相似文献   

3.
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.  相似文献   

4.
5.
6.
Heterochromatin-associated protein 1 (HP1) is thought to affect chromatin structure through interactions with other proteins in heterochromatin. Chromo domains located near the amino (amino chromo) and carboxy (chromo shadow) termini of HP1 may mediate such interactions, as suggested by domain swapping, in vitro binding and 3D structural studies . Several HP1-associated proteins have been reported, providing candidates that might specifically complex with the chromo domains of HP1. However, such association studies provide little mechanistic insight and explore only a limited set of potential interactions in a largely non-competitive setting. To determine how chromo domains can selectively interact with other proteins, we probed random peptide phage display libraries using chromo domains from HP1. Our results demonstrate that a consensus pentapeptide is suffident for specific interaction with the HP1 chromo shadow domain. The pentapeptide is found in the amino acid sequence of reported HP1-associated proteins, including the shadow domain itself. Peptides that bind the shadow domain also disrupt shadow domain dimers. Our results suggest that HP1 dimerization, which is thought to mediate heterochromatin compaction and cohesion, occurs via pentapeptide binding. In general, chromo domains may function by avidly binding short peptides at the surface of chromatin-associated proteins.  相似文献   

7.
8.
9.
10.
11.
12.
The human unr gene encodes an 85 kDa protein which contains five cold shock domains (CSD). The capacity of Unr to interact in vitro with RNA and its intracellular localization suggest that Unr could be involved in some aspect of cytoplasmic mRNA metabolism. As a step towards identification of Unr mRNA targets, we investigated the RNA-binding specificity of Unr by an in vitro selection approach (SELEX). Purine-rich sequences were selected by Unr, leading to the identification of two related consensus sequences characterized by a conserved core motif AAGUA/G or AACG downstream of a purine stretch. These consensus sequences are 11-14 nt long and appear unstructured. RNAs containing a consensus sequence were bound specifically by Unr with an apparent dissociation constant of 1 x 10(-8) M and both elements, the 5' purine stretch and the core motif, were shown to contribute to the high affinity. When the N-terminal and C-terminal CSD were analyzed individually, they exhibited a lower affinity than Unr for winner sequences (5- and 100-fold, respectively) but with similar binding specificity. Two combinations of CSDs, CSD1-2-3 and CSD1*2-3-4-5 were sufficient to achieve the high affinity of Unr, indicating some redundancy between the CSDs of Unr for RNA recognition. The SELEX-generated consensus motifs for Unr differ from the AACAUC motif selected by the Xenopus Y-box factor FRGY2, indicating that a diversity of RNA sequences could be recognized by CSD-containing proteins.  相似文献   

13.
We previously used a genetic approach to identify a new class of Schizosaccharomyces pombe genes (chromosome loss when overexpressed; clo genes) that, when present in elevated dosage, cause the loss of an otherwise stable cen1 linear minichromosome at high rates. Here we report the identities of two clo genes; one encodes histone H3.3 and the other, designated clo2, encodes a novel protein with significant homology to fission yeast Swi6p, human and Drosophila HP1 heterochromatin proteins, and other chromo domain-containing proteins. Members of this group have been shown to localize to heterochromatic DNA, including centromeres, and to play roles in chromatin formation and organization. The S. pombe Clo2 protein localizes to centromere DNA in vivo, and overexpression of clo2 leads to a dramatic increase in the rate of mitotic loss of an artificial chromosome. Clo2p is not essential for mitotic growth, however, even in cells that also lack Swi6p. Thus, fission yeast appears to utilize multiple, functionally redundant, HP1-related proteins for heterochromatin-associated activities at centromeres and perhaps elsewhere in the genome.  相似文献   

14.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

15.
Kim HJ  Kato N  Kim S  Triplett B 《Planta》2008,228(2):281-292
Hydrogen peroxide and other reactive oxygen species are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We show here, based on immunoreactivity, that the enzyme is a Cu/Zn-SOD (CSD). Immunogold localization shows that CSD localizes to secondary cell walls of developing cotton fibers. Five cotton CSD cDNAs were cloned from cotton fiber and classified into three subfamilies (Group 1: GhCSD1; Group 2: GhCSD2a and GhCSD2b; Group 3: GhCSD3 and GhCSD3s). Members of Group 1 and 2 are expressed throughout fiber development, but predominant during the elongation stage. Group 3 CSDs are also expressed throughout fiber development, but transiently increase in abundance at the transition period between cell elongation and secondary cell wall synthesis. Each of the three GhCSDs also has distinct patterns of expression in tissues other than fiber. Overexpression of cotton CSDs fused to green fluorescent protein in transgenic Arabidopsis demonstrated that GhCSD1 localizes to the cytosol, GhCSD2a localizes to plastids, and GhCSD3 is translocated to the cell wall. Subcellular fractionation of proteins from transgenic Arabidopsis seedlings confirmed that only c-myc epitope-tagged GhCSD3 co-purifies with cell wall proteins. Extracellular CSDs have been suggested to be involved in lignin formation in secondary cell walls of other plants. Since cotton fibers are not lignified, we suggest that extracellular CSDs may be involved in other plant cell wall growth and development processes.  相似文献   

16.
The development and progression of cancer is controlled by gene expression, often regulated through chromatin packaging. Heterochromatin protein 1(Hsalpha) (HP1(Hsalpha)), one of three human HP1 family members, participates in heterochromatin formation and gene regulation. HP1(Hsalpha) possesses an amino-terminal chromodomain, which binds methylated lysine 9 of histone H3 (meK9 H3), and a carboxyl-terminal chromoshadow domain (CSD) that is required for dimerization and interaction with partner proteins. HP1(Hsalpha) is down-regulated in invasive metastatic breast cancer cells compared with poorly invasive nonmetastatic breast cancer cells. Expression of EGFP-HP1(Hsalpha) in highly invasive MDA-MB-231 cells causes a reduction in in vitro invasion, without affecting cell growth. Conversely, knock-down of HP1(Hsalpha) levels in the poorly invasive breast cancer cell line MCF-7 increased invasion, without affecting cell growth. To determine whether functions of the CSD were required for the regulation of invasion, mutant forms of HP1(Hsalpha) were expressed in MDA-MB-231 cells. A W174A mutation that disrupts interactions between HP1(Hsalpha) and PXVXL-containing partner proteins reduced invasion similar to that of the wild type protein. In contrast, an I165E mutation that disrupts dimerization of HP1(Hsalpha) did not decrease invasion. No gross changes in localization and abundance of HP1(Hsbeta), HP1(Hsgamma), and meK9 H3 were observed upon expression of wild type and mutant forms of HP1(Hsalpha) in MDA-MB-231 cells. Taken together, these data demonstrate that modulation of HP1(Hsalpha) alters the invasive potential of breast cancer cells through mechanisms requiring HP1 dimerization, but not interactions with PXVXL-containing proteins.  相似文献   

17.
18.
19.
Moazed D 《Molecular cell》2001,8(3):489-498
The assembly of DNA into regions of inaccessible chromatin, called silent chromatin, is involved in the regulation of gene expression and maintenance of chromosome stability in eukaryotes. Recent studies on Sir2-containing silencing complexes in budding yeast and HP1- and Swi6-containing silencing complexes in metazoans and fission yeast suggest a common mechanism for the assembly of these domains, which involves the physical coupling of histone modifying enzymes to histone binding proteins.  相似文献   

20.
Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1α and HP1β to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1α or HP1β we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1α and HP1β to the chromosome region. We show that CD-less HP1α can induce chromatin condensation, whereas the effect of truncated HP1β is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1α and HP1β without a functional CD are able to induce heterochromatinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号