首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this “rhizosphere effect” on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa.  相似文献   

2.
杨阳  刘秉儒 《生态学报》2015,35(22):7562-7570
通过对宁夏荒漠草原6种地带性优势物种长芒草、蒙古冰草、甘草、牛心朴子、黑沙蒿和苦豆子植物根际与非根际土壤养分和微生物量分布特征进行研究,探讨不同植物根际养分的富集的相关性和差异性。研究结果表明:6种植物根际土壤养分和微生物量均表现出明显的富集效应,根际富集率大小依次为菊科(黑沙蒿)豆科(苦豆子、甘草)禾本科(长芒草、蒙古冰草)萝藦科(牛心朴子);全磷(TP)在根际和非根际中无显著差异(P0.05),其它土壤养分及理化指标在根际中均表现出显著富集(P0.05),土壤养分中以有机碳(SOC)的富集作用最为明显;土壤有效态养分较全量养分对植物根际微小的变化响应更为灵敏;不同荒漠植物根际与非根际SOC与全氮(TN)呈极显著线性关系(P0.01),TN与碱解氮之间呈极显著线性关系(P0.01),TP与有效磷(AP)没有显著的相关性(P0.05)。荒漠植物土壤有效养分在根际存在一定的富集,灌木和豆科植物的根际效应的大于禾本科植物,它们通过降低根际pH值可以提高根际养分,有利于在脆弱环境下对土壤养分的有效利用。  相似文献   

3.
The role of proteinaceous amino acids in rhizosphere nutrient mobilization was assessed both experimentally and theoretically. The degree of adsorption onto the soil's solid phase was dependent on both the amino acid species and on soil properties. On addition of amino acids to both soil and freshly precipitated Fe(OH)3, no detectable mobilization of nutrients (K, Na, Ca, Mg, Cu, Mn, Zn, Fe, S, P, Si and Al) was observed, indicating a very low complexation ability of the acidic, neutral and basic amino acids. This was supported by results from a solution equilibria computer model which also predicted low levels of amino acid complexation with solutes present in the soil solution. On comparison with the Fe(OH)3 and equilibria data obtained for the organic acid, citrate, it was concluded that amino acids released into the rhizosphere have a limited role in the direct acquisition of nutrients by plants. The effectiveness of root exudates such as amino acids, phytosiderophores and organic acids in nutrient mobilization from the rhizosphere is discussed with reference to rhizosphere diffusion distances, microbial degradation, rate of complexation and the root's capacity to recapture exudate-metal complexes from the soil.  相似文献   

4.
Biological costs and benefits to plant-microbe interactions in the rhizosphere   总被引:16,自引:0,他引:16  
This review looks briefly at plants and their rhizosphere microbes, the chemical communications that exist, and the biological processes they sustain. Primarily it is the loss of carbon compounds from roots that drives the development of enhanced microbial populations in the rhizosphere when compared with the bulk soil, or that sustains specific mycorrhizal or legume associations. The benefits to the plant from this carbon loss are discussed. Overall the general rhizosphere effect could help the plant by maintaining the recycling of nutrients, through the production of hormones, helping to provide resistance to microbial diseases and to aid tolerance to toxic compounds. When plants lack essential mineral elements such as P or N, symbiotic relationships can be beneficial and promote plant growth. However, this benefit may be lost in well-fertilized (agricultural) soils where nutrients are readily available to plants and symbionts reduce growth. Since these rhizosphere associations are commonplace and offer key benefits to plants, these interactions would appear to be essential to their overall success.  相似文献   

5.
We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this "rhizosphere effect" on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to (a) obtain a better understanding of the mechanism by which ciliate species richness and abundance differ among plant species and (b) to determine whether this mechanism is maintained via stimulatory and/or inhibiting factors associated with particular plant species. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis ). The ANOVA showed that the bacteria plus nutrients, and the nutrients-only treatment have no significant effect on the overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species to increase the taxonomic resolution of treatment effects showed that bacterial slurries have a significant effect on colpodean ciliate species richness. These results suggest that for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualism between plants and protozoa.  相似文献   

6.
Rhizosphere: its structure,bacterial diversity and significance   总被引:3,自引:0,他引:3  
Sustainable agricultural practices are the answer to multifaceted problems that have resulted due to prolonged and indiscriminate use of chemical based agronomic tools to improve crop productions for the last many decades. The hunt for suitable ecofriendly options to replace the chemical fertilizers and pesticides has thus been aggravated. Owing to their versatile and unmatchable capacities microbial agents offer an attractive and feasible option to develop the biological tools to replace/supplement the chemicals. Exploring the microorganisms that reside in close proximity to the plant is thus a justified move in the direction to achieve this target. One of the most lucrative options is to look into the rhizosphere. Rhizosphere may be defined as the narrow zone of soil that surrounds and get influenced by the roots of the plants. It is rich in nutrients compared to the bulk soil and hence exhibit intense biological and chemical activities. A wide range of macro and microorganisms including bacteria, fungi, virus, protozoa, algae, nematodes and microarthropods co-exist in rhizosphere and show a variety of interactions between themselves as well as with the plant. Plant friendly bacteria residing in rhizosphere which exert beneficial affect on it are called as plant growth promoting rhizobacteria (PGPR). Here we review the structure and bacterial diversity of the rhizosphere. The major points discussed here are: (1) structure and composition of the rhizosphere (2) range of bacteria found in rhizosphere and their interactions with the plant with a particular emphasis on PGPR (3) mechanisms of plant growth promotion by the PGPR (4) rhizosphere competence.  相似文献   

7.
豆科草本植物固氮是陆地生态系统重要的自然氮输入方式, 影响着草地生产的经济性和可持续性。为探讨氮磷交互作用影响豆科草本植物生物固氮率的潜在生理生态机制, 该研究选取8种豆科草本植物分别种植在对照、氮肥添加、磷肥添加和氮磷耦合添加处理的土壤中, 进行野外盆栽实验。测定了初花期植物生物量和营养含量、根部碳水化合物含量、根际pH、根际柠檬酸含量、根际有效磷含量、植物根瘤生物量、磷含量及其生物固氮率。主要结果: 依赖于豆科物种, 氮添加显著促进了豆科草本植物根际磷的活化, 降低了根生物量分配以及根系非结构性碳水化合物含量。在两种磷添加处理下, 氮添加导致8种豆科草本植物根瘤生物量平均下降27%-36%, 生物固氮率平均下降20%-33%。磷添加降低了根际的磷活化, 但促进了豆科草本植物根系发育和非结构性碳水化合物的积累。在施氮和不施氮条件下, 磷添加分别使8种豆科草本植物的生物固氮率提高了45%-69%和0-47%。氮添加降低豆科草本植物生物固氮率, 其原因是氮添加提高了植物磷需求, 为活化更多磷, 豆科草本植物降低根系生物量和根系非结构性碳水化合物的含量, 导致根瘤发育受到限制。在氮添加的同时进行磷添加, 能够改善土壤氮磷平衡, 促进根系生长和非结构性碳水化合物积累, 缓解了增氮对生物固氮的抑制作用。  相似文献   

8.
The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.  相似文献   

9.
10.
入侵植物三叶鬼针草(Bidens pilosa)对我国农牧业生产造成了重大的损失。本文主要研究三叶鬼针草入侵与不同本地植物竞争对土壤微生物群落结构和土壤养分的影响。利用磷脂脂肪酸方法(phospholipid fatty acids, PLFAs)测定土壤微生物群落组成, 同时测定土壤养分和酶活性, 并利用Canoco4.5软件分析了土壤微生物、土壤养分和土壤酶活性的相关性。结果表明: (1)三叶鬼针草对革兰氏阳性菌、革兰氏阴性菌、丛枝菌根真菌等土壤微生物具有较强的聚集能力, 且其根际土壤聚集的微生物类群与本地植物种类密切相关。(2)三叶鬼针草入侵显著增加了入侵地土壤的有机碳含量, 降低了铵态氮的含量; 土壤中的速效钾、速效磷和硝态氮的含量则与本地植物种类密切相关。(3)相关性分析表明, 16:00和16:1 ω5c对铵态氮的含量影响较大, 而三叶鬼针草入侵地16:00和16:1 ω5c的含量显著高于裸土对照, 进而推测这一状况导致了铵态氮含量的降低。(4) 15:1 anteiso A和18:1 ω5c与速效钾的含量呈显著正相关, 而其含量在狗尾草(Setaria viridis)中显著高于其他处理, 三叶鬼针草与狗尾草混种处理中土壤中速效钾的含量高于其他处理。以上结果说明, 三叶鬼针草通过改变土壤微生物群落结构影响了土壤酶活性和土壤养分, 且这种改变与入侵地本地植物种类有关。  相似文献   

11.
The role of root exudates and allelochemicals in the rhizosphere   总被引:61,自引:1,他引:61  
Bertin  Cecile  Yang  Xiaohan  Weston  Leslie A. 《Plant and Soil》2003,256(1):67-83
Plant roots serve a multitude of functions in the plant including anchorage, provision of nutrients and water, and production of exudates with growth regulatory properties. The root–soil interface, or rhizosphere, is the site of greatest activity within the soil matrix. Within this matrix, roots affect soil structure, aeration and biological activity as they are the major source of organic inputs into the rhizosphere, and are also responsible for depletion of large supplies of inorganic compounds. Roots are very complicated morphologically and physiologically, and their metabolites are often released in large quantities into the soil rhizosphere from living root hairs or fibrous root systems. Root exudates containing root-specific metabolites have critical ecological impacts on soil macro and microbiota as well as on the whole plant itself. Through the exudation of a wide variety of compounds, roots impact the soil microbial community in their immediate vicinity, influence resistance to pests, support beneficial symbioses, alter the chemical and physical properties of the soil, and inhibit the growth of competing plant species. In this review, we outline recent research on root exudation and the role of allelochemicals in the rhizosphere by studying the case of three plants that have been shown to produce allelopathic root exudates: black walnut, wheat and sorghum  相似文献   

12.
高寒草甸根际土壤化学计量特征对草地退化的响应   总被引:1,自引:0,他引:1  
为深入理解高寒草甸退化过程中根际和非根际土壤中碳(C)、氮(N)和磷(P)的化学计量特征和土壤养分的变化规律,并获得退化草地土壤养分和微生物养分限制的信息,本研究以祁连山东缘4个不同退化程度高寒草甸为对象,通过采集优势植物根际土(0~2 mm)和非根际土(0~10 cm)的土壤样品,分析了土壤C、N、P浓度和比例,土壤中可提取的C、N、P(Ext-C、Ext-N、Ext-P)的浓度和比例,参与C、N、P循环的胞外酶(β-1,4-葡萄糖苷酶、N-乙酰-β-D-葡萄糖苷酶、亮氨酸基肽酶、酸性磷酸酶)的活性和比例,以及土壤微生物生物量碳、氮、磷(MBC、MBN、MBP)的含量及比例.结果表明: 高寒草甸退化过程中优势植物根际养分含量高于非根际养分.随着高寒草甸退化程度的加剧,其土壤的C∶N∶P发生重大改变,表现出C∶N的严重失调,表明草地退化程度越高受到N的限制越严重.不同退化程度的高寒草甸中,经过对数转化的根际C-、N-和P-胞外酶的比例均偏离了在全球生态系统分析中获得的1∶1∶1比例,表明高寒草甸退化主要受到强烈的N限制,P次之.高寒草甸地区土壤全量养分含量较高,土壤中的速效养分较低,成为阻碍牧草生长的限制因子.  相似文献   

13.
Rhizosphere microbial community is important for the acquisition of soil nutrients and closely related to plant species. Fertilisation practice changed soil quality. With the hypothesis of stronger rhizosphere effect of plant on rhizosphere microbial community than fertilisation management, we designed this research based on a long‐term field experiment (1982–present). This study consists of no fertilisation (NF), mineral fertilisers (NPK), mineral fertilisers plus 7,500 kg/ha of wheat straw addition (WS) and mineral fertilisers plus 30,000 kg/ha of cow manure (CM). After analysing, we found that fertilisation management not only elevated crop yield but also affected crop rhizosphere microbial community structure. The influence of fertilisation practice on wheat rhizosphere microbial structure was stronger than that of wheat. For wheat rhizosphere bacterial community, it was significantly affected by soil water content (SWC), nitrogen (TN), phosphorus (TP), pH, available phosphorus (AVP) and nitrogen (AVN), dissolved organic nitrogen (DON) and carbon (DOC). Besides SWC, pH, AVP, AVN, TN, TP and DOC, the wheat rhizosphere fungi community was also significantly affected by soil organic matter (SOM) and available potassium (AVK). Moreover, compared to rhizosphere bacterial community, the influences of soil physiochemical properties on rhizosphere fungal community was stronger. In conclusion, fertilisation practice was the primary factor structuring rhizosphere microbial community by changing soil nutrients availabilities in the agroecosystem.  相似文献   

14.
宁南山区典型植物根际与非根际土壤微生物功能多样性   总被引:8,自引:0,他引:8  
安韶山  李国辉  陈利顶 《生态学报》2011,31(18):5225-5234
选择宁南山区9种典型植物的根际与非根际土壤为研究对象,采用Biolog方法对土壤微生物功能多样性进行了研究。结果表明:9种不同植物根际土壤与非根际土壤的微生物活性(AWCD)、微生物多样性指数和微生物均匀度指数均存在明显差异;除冰草外,其他各种植物的根际土壤的微生物活性AWCD、微生物多样性指数和微生物均匀度指数均比非根际土壤的高;9种典型植物根际土壤微生物主要碳源利用类型是羧酸类和氨基酸类,非根际土壤微生物主要碳源利用类型是羧酸类、胺类、氨基酸类;微生物活性、微生物多样性指数和微生物均匀度指数两两之间均达到了极显著相关,与土壤化学性质各指标之间均未达到显著相关水平。  相似文献   

15.
Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the xylem up to leaves, and efficient xylem unloading aboveground. These systems can be enhanced for the movement of arsenic and mercury. (6) Aboveground control over the electrochemical state and chemical speciation of elemental pollutants will maximize their storage in leaves, stems, and vascular tissues. Our research suggests ionic Hg(II) and arsenite will be the best chemical species to trap aboveground. (7) Chemical sinks can increase the storage capacity for essential nutrients like iron, zinc, copper, sulfate, and phosphate. Organic acids and thiol-rich chelators are among the important chemical sinks that could trap maximal levels of mercury and arsenic aboveground. (8) Physical sinks such as subcellular vacuoles, epidermal trichome cells, and dead vascular elements have shown the evolutionary capacity to store large quantities of a few toxic pollutants aboveground in various native hyperaccumulators. Specific plant transporters may already recognize gluthione conjugates of Hg(II) or arsenite and pump them into vacuole.  相似文献   

16.
The rhizosphere and plant nutrition: a quantitative approach   总被引:9,自引:0,他引:9  
Darrah  P. R. 《Plant and Soil》1993,155(1):1-20
The role of the rhizosphere in relation to mineral nutrition is discussed within a quantitative framework using the Barber-Cushman model as a starting point. The uptake or release of nutrients by roots growing in soil leads to concentration gradients forming in the soil: the zone so affected is termed the rhizosphere. The nature of these gradients depends on three factors: the rate of uptake/release; the mobility of the nutrient in soil; and the rate of conversion between available and unavailable forms. The interplay between these factors determines the amount of mineral nutrients acquired by the plant and it is the complexity of the interplay which demands the use of mathematical models in order to understand which factors most limit uptake. Despite extensive experimental evidence of root-mediated changes to the physical, chemical and biological status of rhizosphere soil, the quantitative significance of these changes for mineral nutrition has not been assessed. The problems of making this quantitative transition are reviewed.  相似文献   

17.
我国土壤重金属污染问题日益突出.作为一种绿色、安全的生物修复技术,植物修复技术备受关注.根系分泌物作为植物-土壤-微生物三者物质交换与信息传递的重要载体,是植物响应外界胁迫的重要生理生态指征,在植物修复过程中发挥关键作用.研究表明,根系分泌物能够有效调控根际微环境,提升植物抗逆能力,影响重金属在根际微域中的环境行为.传...  相似文献   

18.
Our purpose was to quantify the effect of rhizosphere processes on the availability of soil cadmium and zinc to various plant species. E values for Cd and Zn were measured on two contaminated soils differing mainly in their pH (6.2 and 8.1). L values were measured for six plant species with contrasting metal uptakes. The difference between E and L values quantifies the mobilization of the element which was non-phyto-available prior to cultivation. For Zn, L values were 1.2 to 5.6 times greater than the E values, depending on the plant species. The increase in Zn availability was greater in the basic soil. For Cd, L values in the basic soil were 1.1 to 2 times greater than the E value. In the slightly acid soil, plants did not enhance the cadmium availability. The mobilization of non-labile metal could be due to exudates from roots or microflora, phytosiderophores being responsible for the highest mobilization. The lower availability of Fe or Zn could explain the greater mobilization in the basic soil.  相似文献   

19.
Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.  相似文献   

20.
Strigolactones are an ancient group of plant signalling molecules. They play a critical role in the rhizosphere where they facilitate the formation of symbioses with fungi, crucial for the acquisition of plant nutrients in over 80 % of land plant species. Strigolactones have also been exploited by parasitic weeds as a rhizosphere signal indicating the presence of a host species, resulting in devastating losses in some agricultural systems. Recently, they have also been shown to act endogenously as plant hormones controlling shoot branching and have been implicated in a wide range of other physiological processes, including root growth, root-hair elongation, adventitious rooting, secondary growth, photomorphogenesis, seed germination, nodulation, and protonemal development in mosses. Here, we discuss the evidence for the involvement of strigolactones as endogenous regulators of these processes and highlight some examples where the evidence is inconclusive. One major gap in our understanding is the identity of the endogenous strigolactone(s) that are biologically active. A discussion of the interactions between the different plant hormones and the possible role of strigolactones as integrators of the root-to-shoot balance, nutrient acquisition, and thus resource allocation illustrates some important future directions for this area of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号