首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of captive juvenile Pacific halibut was linearly related to energy consumption (J g−1 day−1) at 4°C by the following equation: growth (% body weight (b.w.) day−1)=0–007 (consumption J g−1 day−1)– 0.192; r2 =0.81. Weight gain was independent of size for fish between 9 and 7000 g when growth was expressed as a function of consumption in J g−1 day−1. Maintenance ration determined in feeding–growth experiments averaged 27.4 J g−1 day−1 at 4–0°C. Small halibut ate significantly more food than large fish. Single meals following 2 day fasts averaged 4.1% b.w. for halibut under 100 g, 1.72% b.w. for 1.2 kg fish and 1.1% B.W. for 6.8 kg fish. Both large and small size categories of halibut tended to evacuate their meal in about 3 days even though small fish ate relatively larger meals. Minimum estimates for daily ration to achieve growth rates observed in the Gulf of Alaska were approximately 0.5 to 2.4% b.w. day−1 depending on fish size and whether northern shrimp or yellowfin sole were their prey.  相似文献   

2.
Abstract Salterns in the Bretagne (France), exhibiting different stages of salinity of 5% to 33% evolved up to 0.7 mmol methane per m2 per day. Methane concentrations of up to 0.4 mM were found. High methane evolution rates and increased methane concetration were restricted to basins of up to 7% and more than 15% salinity, and to the upper 10 cm of the sediments, where high sulfate concentrations (50 to 100 mM) occurred as well. Basins of 10–15% salinity exhibited only low methane evolution rates (less than 0.05 mmol methane per m2 per day) and low methane concentrations (less than 0.02 mM). Gas bubbles arising during times of increased photosynthetic activity from the microbial mats covering the sediments of the saltern basins contained up to 2% methane. Addition of methylated amines and methanol, but not of H2/CO2, formate or acetate, to sediments slurries from basins of up to 12% salinity resulted in a rapid enrichment of methanogenic populations. Enriched methanogenic bacteria did not grow at salinities exceeding 15% or temperatures exceeding 45°C, and showed characteristics similar to those documented for Methanococcus halophilus and strain SF1 (DSM 3243). No enrichments were obtained from basins of more than 20% salinity in spite of methane being produced and evolved from those basins.  相似文献   

3.
Methanogenesis and methanotrophy within a Sphagnum peatland   总被引:4,自引:0,他引:4  
Abstract: Methane production and consumption activities were examined in a Massachusetts peatland. Peat from depths of 5–35 cm incubated under anaerobic conditions, produced an average of 2 nmol CH4 g−1 h−1 with highest rates for peat fractions between 25–30 cm depth. Extracted microbial nucleic acids showed the strongest relative hybridization with a 16S rRNA oligonucleotide probe specific for Archaea with samples from the 25–30 cm depth. In aerobic laboratory incubations, the peat consumed methane with a maximum velocity of 67 nmol CH4 g−1 h−1 and a K s of 1.6 μM. Methane consumption activity was concentrated 4–9 cm below the peat surface, which corresponds to the aerobic, partially decomposed region in this peatland. Phospholipid fatty acid analysis of peat fractions demonstrated an abundance of methanotrophic bacteria within the region of methane consumption activity. Increases in temperature up to 30°C produced an increase in methane consumption rates for shallow samples, but not for samples taken from depths greater than 9 cm. Nitrogen fixation experiments were carried out using 15N2 uptake in order to avoid problems associated with inhibition of methanotrophy. These experiments demonstrated that methane in peat samples did not stimulate nitrogen fixation activity, nor could activity be correlated with the presence of methanotrophic bacteria in peat fractions.  相似文献   

4.
We measured the flow of methane in Typha latifolia L. (cattail)-dominated wetlands from microbial production in anoxic sediment into, through, and out of emergent T. latifolia shoots (i.e. plant transport). The purpose was to identify key environmental and plant factors that might affect rates of methane efflux from wetlands to the Earth's atmosphere. Methane accumulated in leafy T. latifolia shoots overnight, reaching concentrations up to 10000 μl l−1 (vs. atmospheric concentrations <4 μl l−1), suggesting that lower stomatal conductance at night limits methane efflux from the plant into ambient air. Daytime light and (or) lower atmospheric humidity that induce convective gas flow through the plant coincided with ( a ) an increase in the rate of methane efflux from T. latifolia leaves to ambient air (from <0·1 to >2·0 μmol m−2 (leaf) s−1) and ( b ) a decrease in shoot methane concentration to <70 μl l−1. Very short fluctuation in stomatal conductance during the day did not affect the methane efflux rate unless, possibly, the rate of photosynthesis decreased. A strong relationship between the maximum daily rate of methane efflux and shoot methane concentration (measured before the onset of convective gas flow) suggests T. latifolia plants behave like a capacitor (filling with methane at night, emitting the stored methane during the day). Experimentally cutting leaves (to prevent pressurization) reduced plant capacitance for methane.  相似文献   

5.
SUMMARY. Oxygen consumption of P. zietziana was measured monthly in two saline (>60‰ salinity) lakes from November 1973 to November 1975 with short (<2 h) in situ incubations in BOD bottles. Tests in which oxygen decline was monitored continuously showed that there was no handling effect and respiratory rate was constant down to 1.8–1.9 mg O2 1−1, about 40% of the usual initial concentration. Incubations over 24 h demonstrated no diurnal fluctuations in oxygen consumption. Multiple regression analysis indicated that 90% of the variance in respiratory rate ( R in mg O2x10−4h−1 individual−1) was accounted for by changes in salinity (3%; S in ‰), temperature (7%; T in °C) and dry weight (8%; W in mg × 10−3): log R =−1.123+0.0025+0.021 T+ 0.756 log W. From this equation and data on population density, population respiration was calculated: 91864.5 mg O2 m−2 year−1 in Pink Lake and 12367.5 mg O2 m−2year−1 in Lake Cundare.  相似文献   

6.
Plasma membrane ferric reductase activity was enhanced 5-fold under iron limitation in the unicellular green alga Chlorella kessleri Fott et Nováková. Furthermore, ferric reductase activity in iron-limited cells was approximately 50% higher in the light than in the dark. In contrast, iron uptake rates of iron-limited cells were unaffected by light versus dark treatments. Rates of iron uptake were much lower than rates of ferric reduction, averaging approximately 2% of the dark ferric reduction rate. Ferric reduction was associated with an increased rate of O2 consumption in both light and dark, the increase in the light being approximately 1.5 times as large as in the dark. The increased rate of O2 consumption could be decreased by half by the addition of catalase, indicating that H2O2 is the product of the O2 consumption and that the increased O2 consumption is nonrespiratory. The stimulation of O2 consumption was almost completely abolished by the addition of bathophenanthroline disulfonate, a strong chelator of Fe2 + . Anaerobic conditions or the presence of exogenous superoxide dismutase affected neither ferric reduction nor iron uptake. We suggest that the O2 consumption associated with ferric reductase activity resulted from superoxide formation from the aerobic oxidation of Fe2 + , which is the product of ferric reductase activity. At saturating concentrations of Fe3 + chelates, ferric reductase activity is much greater than the iron uptake rate, leading to rapid oxidation of Fe2 + and superoxide generation. Therefore, O2 consumption is not an integral part of the iron assimilation process.  相似文献   

7.
SUMMARY. The oxygen consumption of shrimps ranging from 1 to 30 mg dry mass was determined at 18, 24 and 30°C using a continuous flow recording respirometer based upon a Clark-type oxygen electrode. Respiration (ascribed to routine metabolism) is described by the power curve: R = a Mb , ( R =μg O2 h−1, M = mg dry mass), which gives values of a = 1.632, 2.564 and 4.181, and b = 0.800, 0.898, and 0.793, at 18, 24 and 30°C respectively. The single expression, R = 0.008 T 1.829 M 0.830 provides a reasonable prediction of respiration as a combined function of shrimp size ( M ) and temperature (T, °C). Using an energy equivalent of 14.14 J mg O2−1 estimates of the energy requirements ( E , J h−1 10−3) of routine metabolism are given by the expression: E = 0.115 T 1.829 M 0.830.
Variability in oxygen consumption values between individuals is discussed and the observations on C. nilotica are compared with other crustacean studies.  相似文献   

8.
Abstract: The effect of plant succession on methane uptake was measured on intact soil cores collected from seven heathland sites. Six of the sites had undergone either secondary succession with grass or oak, ammonium fertilization or ploughing, while the seventh site was located in the native heathland. There was a positive relationship between methane uptake rate and time elapsed since the plant invasion had taken place in the native heathland. The native heathland site showed an insignificant atmospheric methane uptake of 0.01 mg CH4 m−2 d−1, whereas the established oak brushwood (70 years old) and the grass invaded heathland (13 years old) showed rates of 1.36 mg CH4 m−2 d−1 and 0.73 mg CH4 m−2 d−1, respectively. In the fertilized heathland plot (112 kg N ha−1 six years prior to this study) grass had become the dominating species and showed a methane oxidation rate of 0.28 mg CH4 m−2 d−1. Ploughing of the heathland resulted in methane oxidation rates seven times the rates measured in the native heathland. The results suggested that an increased future atmospheric nitrogen deposition in heathlands and other nutrient poor ecosystems may have a stimulating effect on the soil sink for atmospheric methane.  相似文献   

9.
Activity of methanotrophic bacteria in Green Bay sediments   总被引:3,自引:0,他引:3  
Abstract Sediment pore water samples obtained from a 19 m station in Green Bay in Lake Michigan were examined for levels of ambient dissolved methane and copper, and for the potential for in situ methane oxidation by methanotrophs found within surface sediments. The in situ methane concentration in the upper oxic sediment layer ranged from 20–150 μmol · 1−1 at this station. The activity of methanotrophs and the kinetics of methane oxidation in these sediments were demonstrated by the uptake of radiolabeled methane. Ks values varied between 4.1–9.6 nmol · cm3 of sediment slurry. High Vmax values (12.7–35.2 nmol · cm−3 · h−1) suggest a large population of methanotrophs in the sediments. An average methane flux to the oxic sediments of 0.24 mol · m−2 · year−1 was calculated from the pore water methane gradients. Pore water concentrations of copper in the upper sediment layer ranged from 10–120 nmol · 1−1. Based upon the copper concentration, other measured parameters, and equilibrium conditions defined by WATEQF4, an estimate for dissolved free Cu2+ concentration of 5–38 nmol · 1−1 pore water was obtained. Several factors control the rate of methane oxidation, including oxygen, methane, and the bioavailability of free Cu2+.  相似文献   

10.
Growth of Pacific cod was related to energy consumption (cal g−1 day−1) and was well described by linear equations. Maintenance ration was 11 and 12 cal g−1 day−1 at 4.5 and 6.5° C, respectively. Cod between 200 and 5000 g had similar growth rates when growth was expressed as a function of consumption (cal g−1 day−1). Laboratory consumption of food averaged 0.9 and 1.3% body weight per day at 4.5 and 6.5° C, respectively. At these temperatures growth was 0.34–0.38% body weight day−1.
Maximum stomach volumes equated to approximately 4.7% of body weight with shrimp as prey. At this meal size Pacific cod did not feed the next day. A multiple meal evacuation experiment was used to verify the consumption estimates. A return-to-hunger estimate of the meal size evacuated was 1.5% body weight day−1 at 6.5° C, similar to the 1.3% consumption estimate. For Pacific cod fed a single meal of 1% body weight the estimated instantaneous evacuation rate was 0.63 body weight day−1 at 6.5° C. Meal size markedly affected the evacuation rate.
Measured consumption and growth rates are similar to those of Atlantic cod, Gadus morhua .  相似文献   

11.
SUMMARY: Sterilized raw sewage sludge enriched with sulphate and inoculated with pure strains of Desulphovibrio desulphuricans produced negligible sulphide. Unsterilized sludge supplemented with 7% (w/v) CaSO4.2H2O and inoculated with crude cultures of sulphate-reducing bacteria obtained from sewage yielded 1·0% S2- (wt S2- produced as H2S/vol. of raw sludge) in 6 months at 30°. By repeated subculture more active cultures developed which produced 1% S2- in 7 days and 1·2–1·9% in 28 days. Digested sludge yielded only 0·1% S2-. In semicontinuous fermentations at 30°, raw sludge without added sulphate produced 20 times its own volume of gas containing 70% CH4 and 30% CO2. When 5% CaSO4.2H2O and an active crude culture of sulphate reducers were added, gas production decreased steadily to zero. There were no differences in pH, temperature and redox potential in sludges producing methane or sulphide. The chief cause of inhibition appeared to be the action of sulphide: 0·02% soluble sulphide (S2-) totally inhibited methane formation; 0·01% S2- initially decreased gas production by one-quarter but there was a slow recovery to normal, suggesting acclimatization of the methane-producing organisms to sulphide.
Linked fermentations, in which gas from a methane fermentation swept H2S from a sulphide fermentation, gave a final gas mixture of about 60% CH4, 30% CO2 and 5–10% H2S. The yield of sulphide depended on the rate of sweeping.  相似文献   

12.
Methane metabolism was investigated with respect to depth in intertidal microbial mats of the Great Sippewissett Salt Marsh, Massachusetts. Although sulfate-reducing organisms dominate anaerobic carbon consumption in marine microbial mats, methanogens persist and their activity varies vertically and temporally in the mat system. In the Sippewissett mats, potential methane production for all mat layers was higher in the spring (17.2 ± 4.5 nmol CH4 cm−2 day−1) than in the fall (3.0 ± 1.1 nmol CH4 cm−2 day−1) and maximal rates were consistently observed in proximity to the chemocline (5–10 mm depth). The methane flux from the mat surface did not vary appreciably over time due to the ability of methanotrophic activity to limit net methane production. Evidence indicates that both aerobic and anaerobic oxidation of methane occurs in this system. The importance of H2 as a substrate for methanogenesis appeared to be the greatest at the mat surface (0–10 mm), and the proportion of methylotrophic methanogens generally increased with depth. These results suggest that both non-equilibrium H2 dynamics and the use of non-competitive substrates permit coexistence of methanogens and sulfate-reducing organisms in the mat system.  相似文献   

13.
SUMMARY. Respiration of Asellus aquaticus was determined on tiine occasions throughout the year using a Gilson differential respirometer. On each occasion the determination was made at the lake temperature, which ranged from 2 to 18°C, Linear regressions were derived for log oxygen uptake against log dry weight. There was a significant difference between mean rates of oxygen uptake at the various temperatures but the slopes of the regression lines, which varied from 0,62 to O.85 with a mean of 0,76, were not significantly different.
The temperature of the lake was monitored throughout the year. Using the relationship of oxygen uptake against temperature, and estimates of population density obtained previously, the total annual respiration of the population was calculated as 4571 ml O2 m-2, equivalent to an energy loss of 92.3 kj m-2 year-1 from a mean biomassof 752 mg m-2.
Consumption of decayed Alnus glutinosa leaves and faecal production rates, and thus assimilation efficiency, were determined by gravimetric methods in the laboratory at 10°C, close to the mean temperature of the lake (10.rC), In the four size classes investigated, larger animals consumed more food per individual, but less on a weight specific basis. However, it was shown that consumption was greater if the leaf material was more highly decomposed, Assimiliation efficiency was calculated as 23%.
Using data for respiration, population density and the assimilation efficiency, the annual population energy budget was estimated as (kJ m-2year-1): consumption, 568.9 (100%); production, 38.5 (6.8%); respiration, 92.3 (16.2%); faeces, 438.1 (77%). The significance of these energy values, and the ecological efficiencies calculated from them, are discussed in relation to other published work.  相似文献   

14.
Oxygen consumption of Oreochromis niloticus at different stages of development was studied in relation to salinity, temperature and time of day, using a Warburg apparatus. The oxygen consumption of newly hatched (0–14 h) larvae was 3.40 μl O2 larva−1 h−1, of older yolk sac larvae 10.09 μl O2 larva−1 h−1, and of one-month-old fry 32.99 μl O2 larva−1 h−1. The QO2 values showed a decrease with development and growth, ranging from 21.2–26.0 μl O2 mg−1 h−1 in newly hatched larvae to 2.97 μl mg−1 h−1 in one-month-old fry. Changes in oxygen consumption occurred with salinity, the highest being at 17%o. Active larvae (12-24 mm T.L.) showed a doubling of consumption with a 10° C rise in temperature, and their Q10 factor increased from 2.25 to 3.43 with increasing size. Day-old yolk-sac larvae, late yolk-sac larvae (5 days old) and fry of 12 14 mm length all showed a depression in oxygen consumption at midnight followed by a dawn rise.  相似文献   

15.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

16.
SUMMARY. 1. Heterotrophic bacterioplankton growth and production rates were estimated in a tropical lake by various methods. Mean growth rates, determined by tritiated thymidine incoporation into DNA, frequency of dividing cells and increase in cell density varied between 0.013 and 0.014 (with a range of 0.006–0.026) h−1 corresponding to bacterial production of 1.16–1.22 (0.34–3.63) mg C m−3 h−1.
2. Heterotrophic bacterial production estimated from oxygen and inorganic carbon consumption in the dark were compared with these values. The oxygen method gave similar results, while values from dark carbon uptake were as much as 2.5 times higher.
3. Although the different estimates of rates of bacterial production showed different patterns, the existence of spatial (vertical) and temporal (diel and seasonal) variation was demonstrated. Bacterial production was 13–41% of the net primary production and 10–30% of gross primary production.
4. Bacterial grazing mortality rate was estimated from size-fractionation and metablic inhibitor experiments. Average grazing rates were between 0.34 and 3.77 mg C m−3 h−1 corresponding to 76–120% of the mean bacterial production rate. Organisms 1–12 μm in size, possibly mainly ciliates. were implicated as important bacterial grazers.  相似文献   

17.
Abstract In the uupermost layers of the anoxic sediment in Lake Cadagno, 9 different species of anaerobic protozoa were identified. The total number of these organisms was about 580 cells·ml−1 sediment. Most pf these protozoa contained endosymbiotic methanogenic bacteria which in total amounted to 106 methanogens·ml−1 sediment. In addition to the methanogenic endosymbionts, cells of Metopus setosus and Caenomorpha lata also contained a non-fluorescent bacterial rod inside the cytoplasm. In some individual cells of C. lata this second type of endosymbiotic bacterium was sometimes the only endosymbiont observed. Contrary to earlier suggestions, anaerobic protozoa do not seem to play a major role in methane production at least in Lake Cadagno. No significant methane production due to the anaerobic protozoa and their methanogenic endosymbionts was found in situ. Isolated ciliates and amoebae produced methane at 12°C, but not at 6°C, probably as a result of temperature limitation. In the sediment of Lake Cadagno sulfate reduction seemed to be the dominant terminal degradation process.  相似文献   

18.
Two populations of Sericostoma personatum Spence were studied during one year in two first order woodland streams, varying in water flow and temperature regime. The life cycles look two and three years, respectively.
Numbers in drift varied with water flow, and daily elimination rates of about 1% due to catastrophic drift were found in one of the streams. Differences in elimination rates between the two populations are discussed in relation to predation, catastrophic drift, and quantity of food present during the year.
The production was about 0.9 g AFDW m-2 yr-1 in both streams, 20–22% of which was production of cases. P/B ratios were 2.4 and 3.8, and reflect differences in life cycle.
Total potential leaf consumption was estimated to about 50 g AFDW m-2 yr-1 in both streams, which makes up about 10% of yearly leaf input. The seasonal pattern of the consumption is discussed in relation to biomass, temperature and leaf input. There was little agreement between the patterns of leaf input and leaf consumption.  相似文献   

19.
Photosynthesis in ozone-exposed duckweed (Lemna gibba)   总被引:2,自引:0,他引:2  
The photosynthetic light saturation curve in duckweed was lowered by 20–25% after ozone exposure (300 nmol mol−1, 1 h). The light flux and oxygen concentration during ozone-exposure had no effect on reduction of net photosynthesis. Net photosynthesis and photorespiration were both depressed by about 40% after exposure for 1 h to 360 nmol mol−1 ozone. We could not find any change in dark respiration after ozone exposure below 300 nmol mol−1. When the concentration of ozone was doubled from 150 nmol mol−1 to 300 nmol mol−1, the uptake of ozone in duckweed changed from 100 nmol m−2 s−1 to 170 nmol m−2 s−1. We found no differences in fluorescence (pattern) between ozone treated plants and the control plants during a period of 150 min after ozone treatment, but there was an increase in synthesis of the Dl-protein and a significant reduction in degradation after ozone treatment (300 nmol mol−1, 1 h). These results, together with fluorescence measurements, indicate that photochemical electron transport was not responsible for the ozone-induced reduction in net photosynthesis.  相似文献   

20.
Production and food intake by an herbivorous pupfish population ( Cyprinodon nevadensis amargosae ) living in the outflow of a thermal artesian well (Tecopa Bore) near Death Valley, California is described. Water issues from the ground at 47.5° C and cools 8.12° C before leaving the study area 300 m from the source. High stream temperatures restricted the pupfish population to some 41 % of the study area, with a resulting mean density of 89 individuals m−2 (range = 13 to 196m−2). Biomass estimates ranged from 7 kcal m−2 to 42 kcal m−2. The mean annual standing crop of pupfishes (24 kcal m−2) turned over about five times annually. Growth rates were highest in juveniles (♂= 9.5% day−1) and slowest in large adults (♀= 08% day−1). Monthly production ranged from 22 kcal m−2 in September to 3 kcal m−2 in July and August. Pupfish in Tecopa Bore fed on algae and detritus, ingesting 1941 kcal m−2 yr−1 or 17.5% of the annual net primary production. 119 kcal m−2 yr−1 was deposited in growth. This latter value is approximately ten times greater than values previously reported for large carnivorous fishes but is comparable lo values reported for herbivorous fishes under pond culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号