共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Temperature dependence of the volumetric parameters of drug binding to poly[d(A-T)].Poly[d(A-T)] and Poly(dA).Poly(dT) 下载免费PDF全文
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures. 相似文献
3.
Infrared dichroism measurements of oriented films of poly(dA)·poly(dT) and poly[d(A-T)]·poly[d(A-T)] have been made under the conditions of low salts content and high humidity for which the geometry is known. The angles which the transition moments make with the helix axis are compared with the orientations of the corresponding bonds. Except for the in-plane base model of poly[(A-T)]·poly[d(A-T)], there is no agreement. This may imply either that a model which assumes bonds and transition moments to be colinear is not acceptable or that x-ray data are inaccurate. These possibilities are discussed especially with respect to phosphate group orientation. An appendix gives the derivations of dichroic-ratio expressions for helical molecules of different symmetry types. 相似文献
4.
Complexes between netropsin and two polynucleotides containing only AT base pairs (poly d(A-T) and poly dA.poly dT) have been prepared at various drug/base pair ratios and studied in solution by Fourier Transform Infrared Spectroscopy. The drug is shown to interact in the narrow groove of poly d(A-T) with the C2O2 carbonyl of thymines and the N3 groups of adenines. Moreover the spectral modifications allow us to propose the existence of interactions at the level of the deoxyribose. No effect is detected on the phosphate groups when netropsin is progressively added. In the case of poly dA.poly dT the interaction seems much weaker as if the high propeller twist of the homopolymer would make the accessibility of the drug to the minor groove more difficult. 相似文献
5.
Chandrasekaran R Giacometti A Arnott S 《Journal of biomolecular structure & dynamics》2000,17(6):1011-1022
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber. 相似文献
6.
Acoustical investigation of poly(dA).poly(dT), poly[d(A-T)], poly(A).poly(U) and DNA hydration in dilute aqueous solutions. 下载免费PDF全文
Apparent molar adiabatic compressibilities and apparent molar volumes of poly[d(A-T)].poly[d(A-T)], poly(dA).poly(dT), DNA and poly(A).poly(U) in aqueous solutions were determined at 1 degree C. The change of concentration increment of the ultrasonic velocity upon replacing counter ion Cs+ by the Mg2+ ion was also determined for these polymers. The following conclusions have been made: (1) the hydration of the double helix of poly(dA).poly(dT) is remarkably larger than that of other polynucleotides; (2) the hydration of the AT pair in the B-form DNA is larger than that of the GC pair; (3) the substitution of Cs+ for Mg2+ ions as counter ions results in a decrease of hydration of the system polynucleotide plus Mg2+, and (4) the magnitude of this dehydration depends on the nucleotide sequence; the following rule is true: the lesser is a polynucleotide hydration, the larger dehydration upon changing Cs+ for Mg2+ ions in the ionic atmosphere of polynucleotide. 相似文献
7.
8.
Mercury-induced transitions between right-handed and putative left-handed forms of poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)] 下载免费PDF全文
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register. 相似文献
9.
A Prunell 《The EMBO journal》1982,1(2):173-179
Chromatin was reconstituted from core histones and recombinant plasmid DNAs carrying poly(dA) . poly(dT) inserts of various lengths. A 97-bp insert was found to occupy discrete and regularly-spaced positions on the edges of the nucleosome. This insert cannot, however, be entirely included due to a block in the center of the particle. In contrast, nucleosomes reconstitute on a shorter 20-bp insert. In this case, the insert shows a marked preference for the edges of the particle. Possible structural and physiological implications of these observations are discussed. 相似文献
10.
A ribonuclease isolated earlier from bovine seminal plasma by DNA-affinity chromatography (Ramakrishnamurti, T. and Pandit, M.W. (1983) J. Chromatogr. 260, 216-222) has now been shown by thermal denaturation studies to destabilize the double-helical structure of DNA and poly[d(A-T).d(A-T)]. Thermal denaturation profiles of DNA in the presence of the protein are much more complicated due to the denaturation of protein itself in the temperature range over which DNA predominantly melts. The protein shows relatively stronger affinity towards denatured DNA as compared to native DNA. The action of micrococcal nuclease on DNA and its complexes with ribonuclease A and bovine seminal ribonuclease indicates that both of these proteins destabilize the double-helical structure of native DNA and thereby render the DNA more sensitive to the micrococcal nuclease. 相似文献
11.
A A Cherny? Iu P Lysov I A Il'icheva A S Zibrov A K Shchelkina O F Borisova O K Mamaeva V L Florent'ev 《Molekuliarnaia biologiia》1990,24(5):1399-1410
Conformational analysis of four stranded DNA helices poly(dT).poly(dA).poly(dA).poly(dT) with parallel arrangement of the identical sugar-phosphate chains connected by twofold symmetry has been performed. All possible models of symmetrical base binding were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of four stranded polynucleotides were calculated. The dependences of conformational energy on the base complex structure and mutual orientation of the poly(dA).and poly(dT) chains were studied. Possible biological functions of four stranded helices are discussed. 相似文献
12.
Proflavin binding to poly[d(A-T)] and poly[d(A-br5U)]: triplet state and temperature-jump kinetics 总被引:2,自引:0,他引:2
The delayed fluorescence properties of proflavin have been exploited in studies of the excited-state binding kinetics of the dye to poly[d(A-T)] and its brominated analogue poly[d(A-br5U)] at room temperature and pH 7. The two analyzed luminescence decay times of the DNA-dye complex are dependent on the total nucleic acid concentration. This dependence is shown to reflect a temporal coupling of the intrinsic delayed emission decay rates with the dynamic chemical kinetic binding processes in the excited state. Temperature-jump kinetic studies conducted on the brominated polymer and corresponding information on poly[d(A-T)] from a previous study [Ramstein, J., Ehrenberg, M., & Rigler, R. (1980) Biochemistry 19, 3938-3948] provide complementary information about the ground state. In the ground state, the poly[d(A-T)]-proflavin complex has one chemical relaxation time, which reaches a plateau at high DNA concentrations. The brominated DNA-dye complex exhibits two relaxation times: a faster relaxation mode that behaves similarly to that for the unhalogenated DNA and a slower relaxation mode that is apparent at high DNA concentrations. The ground-state kinetic data are analyzed in terms of two alternative models incorporating series and parallel reaction schemes. The former consists of two sequential binding steps--a fast bimolecular process followed by a monomolecular step--while the latter consists of two coupled bimolecular steps. A similar analysis for the excited-state data yields reasonable kinetic constants only for the series model, which, in accordance with previous proposals for acridine intercalators, consists of a fast outside binding step followed by intercalation of the dye. A comparison of the ground- and excited-state kinetic parameters reveals that the external binding process is much stronger and the intercalation is much weaker in the excited state. That the excited-state data are only consistent with the series model suggests that delayed luminescence studies may provide a general tool for distinguishing between the two kinetic mechanisms. In particular, we demonstrate the use of delayed luminescence spectroscopy as a tool for probing dynamic DNA-ligand interactions in solution. 相似文献
13.
Complete disproportionation of duplex poly(dT)*poly(dA) into triplex poly(dT)*poly(dA)*poly(dT) and poly(dA) by coralyne 下载免费PDF全文
Coralyne is a small crescent-shaped molecule known to intercalate duplex and triplex DNA. We report that coralyne can cause the complete and irreversible disproportionation of duplex poly(dT)·poly(dA). That is, coralyne causes the strands of duplex poly(dT)·poly(dA) to repartition into equal molar equivalents of triplex poly(dT)·poly(dA)·poly(dT) and poly(dA). Poly(dT)·poly(dA) will remain as a duplex for months after the addition of coralyne, if the sample is maintained at 4°C. However, disproportionation readily occurs upon heating above 35°C and is not reversed by subsequent cooling. A titration of poly(dT)·poly(dA) with coralyne reveals that disproportionation is favored by as little as one molar equivalent of coralyne per eight base pairs of initial duplex. We have also found that poly(dA) forms a self-structure in the presence of coralyne with a melting temperature of 47°C, for the conditions of our study. This poly(dA) self-structure binds coralyne with an affinity that is comparable with that of triplex poly(dT)·poly(dA)·poly(dT). A Job plot analysis reveals that the maximum level of poly(dA) self-structure intercalation is 0.25 coralyne molecules per adenine base. This conforms to the nearest neighbor exclusion principle for a poly(dA) duplex structure with A·A base pairs. We propose that duplex disproportionation by coralyne is promoted by both the triplex and the poly(dA) self-structure having binding constants for coralyne that are greater than that of duplex poly(dT)·poly(dA). 相似文献
14.
Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T) 总被引:3,自引:0,他引:3
Helical structures of double-stranded poly[d(A-T)] in solution have been studied by Raman spectroscopy. While the classical right-handed conformation B-type spectra are obtained in the case of sodium chloride solutions, a Z-form Raman spectrum is observed by addition of nickel ions at high sodium concentration, conditions in which the inversion of the circular dichroic spectrum of poly[d(A-T)] is detected, similar to that observed for high-salt poly[d(G-C)] solutions [Bourtayre, P., Liquier, J., Pizzorni, L., & Taillandier, E. (1987) J. Biomol. Struct. Dyn. 5, 97-104]. The characterization of the Z-form spectrum of poly[d(A-T)] is proposed by comparison with previously obtained characteristic Raman lines of Z-form poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)] solutions and of d(CG)3 and d(CGCATGCG) crystals [Thamann, T. J., Lord, R. C., Wang, A. H.-J., & Rich, A. (1981) Nucleic Acids Res. 9, 5443-5457; Benevides, J. M., Wang, A. H.-J., van der Marel, G. A., van Boom, J. H., Rich, A., & Thomas, G. J., Jr. (1984) Nucleic Acids Res. 14, 5913-5925]. Detailed spectroscopic data are presented reflecting the reorientation of the purine-deoxyribose entities (C2'-endo/anti----C3'-endo/syn), the modification of the phosphodiester chain, and the adenosine lines in the 1300-cm-1 region. The role played by the hydrated nickel ions in the B----Z transition is discussed. 相似文献
15.
Nucleosomes will not form on double-stranded RNa or over poly(dA).poly(dT) tracts in recombinant DNA. 总被引:42,自引:22,他引:20 下载免费PDF全文
We have been unable to "force" double-stranded RNA to fold into nucleosome-like structures using several different histone-RNA "reconstitution" procedures. Even if the histones are first stabilized in octameric form by dimethylsuberimidate cross-linking they are still unable to form specific complexes with the RNA. Moreover double-stranded RNA is unable to induce histones to assemble into octamers although we confirm that the non-nucleic acid homopolymer, polyglutamic acid, has this ability. We have also determined, using pyrimidine tract analysis, that nucleosomes will not form over a sufficiently long segment of poly(dA).poly(dT) in a recombinant DNA molecule. Thus nucleosomes cannot fold DNA containing an 80 base pair poly(dA).poly(dT) segment but a 20 base pair segment can be accommodated in nucleosomes fairly well. Segments of intermediate length can be accommodated but are clearly selected against. Poly(dA).poly(dT) differs only slightly from natural DNA in helix structure. Therefore either this homopolymer resists folding, or nucleosomes are very exacting in the nucleic acid steroid parameters they will tolerate. Such constraints may be relevant to nucleosome positioning in chromatin. 相似文献
16.
Four-stranded DNA helices: conformational analysis of regular poly(dT).poly(dA).poly(dA).poly(dT) helices with various types of base binding 总被引:1,自引:0,他引:1
A A Chernyi I A Lysov YuPIl'ychova A S Zibrov A K Shchyolkina O F Borisova O K Mamaeva V L Florentiev 《Journal of biomolecular structure & dynamics》1990,8(3):513-527
The paper presents results obtained in conformational analysis of homopolymeric four-stranded poly(dT).poly(dA).poly(dA).poly(dT) DNA helices in which the pairs of strands with identical bases are parallel and have a two-fold symmetry axis. All possible models of base binding to yield a symmetric complex have been considered. The dihedral angles of sugar-phosphate backbones and helix parameters, which are consistent with the minima of conformational energy for four-stranded DNAs, have been determined using the results of optimization of conformational energy calculated at atom-atom approximation. Potential energy is shown to depend on the structure of base complexes and on the mutual orientation of unlike strands. Possible biological functions of four-stranded helices are discussed. 相似文献
17.
Right- and left-handed helixes of poly[d(A-T)].poly[d(A-T)] investigated by infrared spectroscopy 总被引:3,自引:0,他引:3
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1. 相似文献
18.
Vardevanyan PO Antonyan AP Parsadanyan MA Davtyan HG Boyajyan ZR Karapetian AT 《Journal of biomolecular structure & dynamics》2005,22(4):465-470
The interaction of Ethidium Bromide (EtBr) with double-stranded (ds-) and single-stranded (ss-) poly[d(A-T)] was studied in different ionic strengths solutions. Optical spectroscopy and Scatchard analysis results indicate that the ligand interacts to both helix and coiled structures of the polynucleotide by "strong" and "weak" binding modes. The association parameters (binding constant -K- and the number of nucleotides corresponding to a binding site -n) of the strong type of interaction were found to be independent of Na+ concentration. Weak interaction occurs at low ionic strength and/or high EtBr concentration. Estimated binding parameters of EtBr with ss- and ds-polynucleotide are in good agreement with those for EtBr-B-DNA complexes. Data obtained provided an evidence for a stacking interaction of EtBr with single stranded poly[d(A-T)]. 相似文献
19.
The effect of hydrostatic pressure upon the DNA duplex, poly(dA)poly(dT), and its component single strands, poly(dA) and poly(dT) has been studied by fourier-transform infrared spectroscopy (FT-IR). The spectral data indicate that at 28 degrees C and pressures up to 12 kbar (1200 MPa) all three polymers retain the B conformation. Pressure causes the band at 967 cm(-1), arising from water-deoxyribose interactions, to shift to higher frequencies, a result consistent with increased hydration at elevated pressures. A larger pressure-induced frequency shift in this band is observed in the single stranded polymers than in the double stranded molecule, suggesting that the effect of pressure on the hydration of single strands may be greater than upon a double stranded complex. A pressure-dependent hypochromicity in the bands attributed to base stacking indicates that pressure facilitates the base stacking in the three polymers, in agreement with previous assessments of the importance of stacking in the stabilization of DNA secondary structure at ambient and high pressures. 相似文献
20.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins. 相似文献