首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mature spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY), acetylcholine and the calcium ionophore A-23187 release endothelium-derived contracting factors (EDCFs), cyclooxygenase derivatives that activate thromboxane-endoperoxide (TP) receptors on vascular smooth muscle. The EDCFs released by acetylcholine are most likely prostacyclin and prostaglandin (PG)H(2), whereas those released by A-23187 remain to be identified. Isometric tension and the release of PGs were measured in rings of isolated aortas of WKY and SHR. A-23187 evoked the endothelium-dependent release of prostacyclin, thromboxane A(2), PGF(2alpha), PGE(2), and possibly PGH(2) (PGI(2) > thromboxane A(2) = PGF(2alpha) = PGE(2)). In SHR aortas, the release of prostacyclin and thromboxane A(2) was significantly larger in response to A-23187 than to acetylcholine. In response to the calcium ionophore, the release of thromboxane A(2) was significantly larger in aortas of SHR than in those of WKY. In both strains of rat, the inhibition of cyclooxygenase-1 prevented the release of PGs and the occurrence of endothelium-dependent contractions. Dazoxiben, the thromboxane synthase inhibitor, abolished the A-23187-dependent production of thromboxane A(2) and inhibited by approximately one-half the endothelium-dependent contractions. U-51605, an inhibitor of PGI synthase, reduced the release of prostacyclin elicited by A-23187 but induced a parallel increase in the production of PGE(2) and PGF(2alpha), suggestive of a PGH(2) spillover, which was associated with the enhancement of the endothelium-dependent contractions. These results indicate that in the aorta of SHR and WKY, the endothelium-dependent contractions elicited by A-23187 involve the release of thromboxane A(2) and prostacyclin with a most likely concomitant contribution of PGH(2).  相似文献   

2.
Radioimmunoassay and bioassay techniques have been used to investigate the ability of leukotriene (LT)F4 to release products of arachidonic acid metabolism from guinea pig isolated lungs perfused via the pulmonary artery. Also, the abilities of LTC4, LTD4, LTE4 and LTF4 to contract guinea pig ileal smooth muscle (GPISM) was studied. Each of the LT's contracted GPISM. The rank order of potency was LTD4 greater than LTC4 greater than LTE4 much greater than LTF4 in a ratio of 1:7:170:280 respectively. Bioassay of pulmonary effluents indicated the passage of LTF4 through the lungs caused a contraction of rabbit aorta as well as an FPL-55712 sensitive contraction of GPISM. The contractions of rabbit aorta were inhibited by pretreatment of the lungs with Indomethacin but not with the thromboxane synthetase inhibitor Dazoxiben. Radioimmunoassay of the lung effluents indicated LTF4 to cause a 70-fold increase in thromboxane B2 (TXB2), 4-fold increase in prostaglandin (PG)E2 and a 16-fold increase in 6-keto PGF1 alpha levels. The LTF4-induced increments of these immunoreactive metabolites was inhibited by pretreatment of the lungs with Indomethacin. Pretreatment of lungs with Dazoxiben inhibited the LTF4-induced increment in TXB2 and enhanced the effluent levels of PGE2 24-fold (compared with untreated lungs). There were no detectable differences in either immunoreactive LTC4 or immunoreactive LTB4 levels. It is concluded LTF4 is a relatively weak agonist on GPISM and can induce the release of cyclooxygenase products of arachidonic acid metabolism from guinea pig perfused lung.  相似文献   

3.
Yu J  Tan GS  Deng PY  Xu KP  Hu CP  Li YJ 《Regulatory peptides》2005,125(1-3):93-97
Previous investigations have indicated that calcitonin gene-related peptide (CGRP), a principal transmitter in capsaicin-sensitive sensory nerves, could alleviate cardiac anaphylaxis injury. Rutaecarpine relaxes vascular smooth by stimulation of CGRP release via activation of vanilloid receptor subtype 1 (VR1). In the present study, we examined the role of capsaicin-sensitive sensory nerves in anaphylactic vessels and the effect of rutaecarpine on antigen-challenged constriction in the guinea pig isolated thoracic aorta. The aortas were challenged with 0.01 mg/ml bovine serum albumin, and the tension of aorta rings was continuously monitored. The amount of CGRP released from thoracic aortas was determined in the absence or presence of rutaecarpine. Antigen challenge caused a vasoconstrictor response concomitantly with an increase in the release of CGRP from the isolated thoracic aorta, and the vasoconstrictor responses were potentiated by CGRP8-37 (10 microM) or capsaicin (1 microM). Pretreatment with diphenhydramine (1 microM) markedly decreased antigen-challenged vasoconstriction. Acute application of capsaicin (0.03 or 0.1 microM) significantly inhibited vasoconstrictor responses. Pretreatment with rutaecarpine (10 or 30 microM) significantly increased CGRP release concomitantly with decrease in antigen-challenged vasoconstriction, which was abolished by CGRP8-37 (10 microM) or capsazepine (10 microM). The present results suggest that an increase in the release of CGRP during vascular anaphylaxis may be a beneficial compensatory response, and that rutaecarpine inhibits antigen-challenged vasoconstriction, which is related to stimulation of endogenous CGRP release via activation of VR1.  相似文献   

4.
The aim of the present study was to assess the changes in gene expression and peptide adrenomedullin (AM) levels in cardiovascular and other tissues in the streptozotocin-diabetic rats. For this purpose, diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/Kg body weight). Half of the diabetic rats were subcutaneously injected with insulin in the afternoon (4 units/day) one week after STZ injection until the day before killing. Control rats received only saline injection. AM mRNA was determined in cardiovascular and other tissues of streptozotocin-diabetic rats using solution-hybridization-RNase protection assay. Circulating AM and peptide AM in cardiovascular and other tissues were estimated using a specific radioimmunoassay. There were increases in preproAM mRNA levels in the left and right ventricles and in the thoracic aorta in both the 2-week and 4-week diabetic rats, but not in the two atria, the mesenteric artery and the lung. In the 2-week diabetic rats, there were decreases in AM contents in the two atria and the lung but an increase in the thoracic aorta. In the 4-week diabetic rats, there were bigger decreases in the atria and also a decrease in the left ventricle. The plasma AM levels were not changed but there was an increase in the excretion of AM in the urine. Our results suggest a possible increase in AM release in the heart and the thoracic aorta in the 2-week and 4-week diabetic rats.  相似文献   

5.
Leukotriene B(4) (LTB(4)) is a potent leukocyte chemoattractant recently implicated in the pathogenesis of atherosclerosis. The aim of this study was to assess the effects of LTB(4) on isolated aortic preparations. Rings of guinea pig aorta were challenged with LTB(4) for recording mechanical responses and measurements of mediator release, and LTB(4) receptor (BLT(1)) expression was assessed by RT-PCR. Single concentrations of LTB(4) induced concentration-dependent contractions that were inhibited by treatment with antihistamines, indomethacin, or the thromboxane receptor antagonist BAYu3405 as well as by denudation of endothelium. In addition, LTB(4) increased the release of histamine and thromboxane in the bath. The contractions induced by LTB(4) were inhibited by either the unselective BLT receptor antagonist ONO-4057 or the selective BLT(1) receptor antagonist U-75302. Pretreatment with all-trans-retinoic acid enhanced the contractions and the release of histamine induced by LTB(4), without affecting either the contractions induced by histamine or the histamine release evoked by calcium ionophore A23187. Analysis by RT-PCR indicated the expression of a BLT(1) receptor in the guinea pig aorta and that BLT(1) receptor mRNA was upregulated after treatment with retinoic acid. These results suggest that LTB(4) contracts the guinea pig aorta via an indirect mechanism involving the release of histamine and thromboxane and that this BLT(1) receptor-mediated response can be upregulated by all-trans-retinoic acid.  相似文献   

6.
Homogenates of phagocytosing polymorphonuclear leukocytes obtained from rabbit peritoneum were incubated with the prostaglandin endoperoxides PGG2 or PGH2. After 2 min at 0°C, incubation mixtures contained an increased rabbit aorta contracting activity. Ether extracts of incubation mixtures contained a substance which contracted the superfused strips of rabbit aorta and coeliac artery and had a half life which was similar to thromboxane A2. The generation of thromboxane A2-like activity from PG endoperoxides was prevented by boiling the homogenate prior to incubation, or by pretreatment with benzydamine, a drug which blocks thromboxane formation in platelets. Production of thromboxane A2-like material by leukocyte homogenates was compared with platelet microsomal thromboxane synthetase.  相似文献   

7.
This study explored the hypothesis that a portion of angiotensin II-induced contractions is dependent on superoxide generation and release of a previously unidentified arachidonic acid metabolite that activates vascular smooth muscle thromboxane receptors. Treatment of rabbit aorta or mesentery artery with the thromboxane receptor antagonist SQ29548 (10 μM) reduced angiotensin II-induced contractions (maximal contraction in aorta; control vs. SQ29548: 134 ± 16 vs. 93 ± 10%). A subset of rabbits deficient in vascular thromboxane receptors also displayed decreased contractions to angiotensin II. The superoxide dismutase mimetic Tiron (30 mM) attenuated angiotensin II-induced contractions only in rabbits with functional vascular thromboxane receptors (maximal contraction in aorta; control vs. Tiron: 105 ± 5 vs. 69 ± 11%). Removal of the endothelium or treatment with a nitric oxide synthase inhibitor, nitro-l-arginine (30 μM) did not alter angiotensin II-induced contractions. Tiron and SQ29548 decreased angiotensin II-induced contractions in the denuded aortas by a similar percentage as that observed in intact vessels. The cyclooxygenase inhibitor indomethacin (10 μM) or thromboxane synthase inhibitor dazoxiben (10 μM) had no effect on angiotensin II-induced contractions indicating that the vasoconstrictor was not thromboxane. Angiotensin II increased the formation of a 15-series isoprostane. Isoprostanes are free radical-derived products of arachidonic acid. The unidentified isoprostane increased when vessels were incubated with the superoxide-generating system xanthine/xanthine oxidase. Pretreatment of rabbit aorta with the isoprostane isolated from aortic incubations enhanced angiotensin II-induced contractions. Results suggest the factor activating thromboxane receptors and contributing to angiotensin II vasoconstriction involves the superoxide-mediated generation of a 15-series isoprostane.  相似文献   

8.
Xanthorrhizol, a bisabolene isolated from the medicinal plant Iostephane heterophylla, was assayed on rat thoracic aorta rings to elucidate its effect and likely mechanism of action, by measuring changes of isometric tension. Xanthorrhizol (1, 3, 10, 30 and 100 microg/mL) significantly inhibited precontractions induced by KCI-; (60mM), noradrenaline (10(-6) M) or CaCl2 (1.0 mM). Increasing concentrations of external calcium antagonized the inhibitory effect on KCl-induced contractions. The vasorelaxing effect of xanthorrhizol was not affected by indomethacin (10 microM) or L-NAME (100 microM) in intact rat thoracic aorta rings precontracted by noradrenaline, which suggested that the effect was not mediated through either endothelium-derived prostacyclin (PGI2) or nitric oxide release from endothelial cells. Endothelium removal did not affect the relaxation induced by xanthorrhizol on rat thoracic aorta rings, discarding the participation of any substance released by the endothelium. Xanthorrhizol inhibitory effect was greater on KCI- and CaCl2-induced contractions than on those induced by noradrenaline. Xanthorrhizol inhibitory effect in rat thoracic aorta is likely explained for interference with calcium availability by inhibiting calcium influx through both voltage- and receptor-operated channels.  相似文献   

9.
We hypothesized that the atheroinhibitory and cardioprotective effects of estrogen may be mediated in part through increased prostacyclin formation by the artery wall. Atherosclerotic abdominal aorta was collected at necropsy from ovariectomized female monkeys fed an atherogenic diet alone or with added Premarin. Basal and arachidonate-stimulated prostacyclin and thromboxane synthesis by artery segments was measured by radioimmunoassay. In contrast to no observed differences in basal release of prostacyclin by the control and estrogen-treated arteries, there was a marked increase (approximately 165%) in arachidonate-stimulated formation of prostacyclin by estrogen-treated arteries, and prostacyclin synthesis was inversely correlated with plaque size. No differences were observed in basal or arachidonate-stimulated thromboxane synthesis by the control and estrogen-treated arteries. In light of known antiatherogenic and vasodilatory effects of estrogen, increased prostacyclin synthesis by estrogen-treated arteries may, in part, explain estrogen's beneficial effects on the artery wall.  相似文献   

10.
Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.  相似文献   

11.
The effect of bromocriptine mesylate on cyclic nucleotides and PGI2 release by rat aortic and uterine tissues was investigated. Treatment of rats with bromocriptine (10 mg kg-1 I.P. daily for 14 days) increased PGI2 release by the thoracic aorta from 0.67 +/- 0.02 to 1.4 +/- 0.03 ng/mg wet tissue (P less than 0.001; n = 6). This increase was antagonized by treatment with sulpiride (15 mg kg-l). Incubation of the arterial tissue with bromocriptine (50 micrograms ml-1) in vitro also stimulated PGI2 release. Mepacrine (160 micrograms ml-1) significantly decreased both basal and stimulated PGI2 release. Incubation of myometrial tissue from pregnant rats with bromocriptine (50 micrograms ml-1) in vitro significantly decreased PGI2 release from 1.25 +/- 0.07 to 0.60 +/- 0.08 ng/mg wet tissue (P less than 0.05, n = 6). It also elevated uterine cAMP from 40 +/- 2 to 64 +/- 3 pmoles/100 mg wet tissue. Both effects were antagonized by sulpiride. Bromocriptine did not affect uterine cGMP or the cyclic nucleotides in the aorta. It is concluded that the increase in aortic PGI2 was mediated via activation of dopamine D-2 receptors that stimulate phospholipase A2 enzyme. The decrease in myometrial PGI2 release may be related to the increase in uterine cAMP resulting from activation of dopamine D-1 receptors. Previous studies suggested a role for PGI2 in implantation in the rat. The results suggest that the inhibitory effect on uterine PGI2 may underlie the reported inhibition of bromocriptine on implantation. On broad basis, the decrease in uterine PGI2 together with the reported luteolytic effect of bromocriptine point to a potential role for the compound in postcoital contraception.  相似文献   

12.
Alteration of vascular thromboxane in rats with subtotal renal ablation   总被引:1,自引:0,他引:1  
To assess the roles of vascular prostaglandins in the hypertension of chronic renal failure, the release of prostacyclin and thromboxane (TX) from aorta was evaluated in male Sprague-Dawley rats, the renal mass of which was reduced by removing one kidney and two-thirds of the contralateral kidney ("5/6 nephrectomy"). Five-sixths nephrectomy was followed by significant rises in serum creatinine to 0.55 +/- 0.03 mg/dl and urea nitrogen to 42.9 +/- 3.8 mg/dl, with a concomitant rise in mean blood pressure from 121.6 +/- 1.6 mmHg to 155.3 +/- 8.4 mmHg. In 5/6 nephrectomized rats, the release of TX A2 from aorta, as measured by its stable metabolite TX B2, increased by 60% (p less than 0.01) and prostacyclin, as measured by its stable metabolite 6-keto-prostaglandin, F1 alpha (6-keto-PG F1 alpha) increased by 51% (p less than 0.05). The amounts of both TX B2 and 6-keto-PG F1 alpha released from aorta were closely related to the height of mean blood pressure. These results suggest that the enhanced vasoconstrictor TX production in the vascular walls may be relevant to hypertension in rats with subtotal renal ablation. The adaptive increase in prostacyclin production in the vascular walls may compensate for the elevation of blood pressure due to chronic renal failure in this animal model.  相似文献   

13.
Slices of rat aorta were incubated in Krebs-Ringer bicarbonate buffer for measurements of immunoreactive 6-ketoprostaglandin F1 alpha, thromboxane (TX) B2, prostaglandin (PG)E2, and PGF2 alpha, and in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. No significant generation of TXB2, PGE2, or PGF2 alpha by rat aortic tissue could be detected. The time-dependent release of 6-keto-PGF1 alpha Krebs-Ringer bicarbonate buffer closely correlated with PGI2 generation in alkaline Tris buffer. During a 30-min incubation period, 6-keto-PGF1 alpha, release was 79.8 +/- 3.3 pmol/mg at a buffer potassium concentration of 3.9 mmol/liter and significantly increased by 23% to 98.3 +/- 8.5 pmol/mg (P less than 0.025) in the absence of potassium in the incubation medium. A smaller decrease in buffer potassium concentration to 2.1 mmol/liter and an increase to 8.8 mmol/liter did not significantly alter aortic 6-keto-PGF1 alpha release. Changes in the incubation buffer sodium concentration from 144 mmol/liter to either 138 or 150 mmol/liter at a constant potassium concentration of 3.9 mmol/liter did not alter the recovery of 6-keto-PGF1 alpha. Our results support the concept that PGI2 is the predominant product of arachidonic acid metabolism in rat aorta. They further show that PGI2 can be recovered quantitatively as 6-keto-PGF1 alpha under the present in vitro conditions. In addition, this in vitro study points to the potassium ion as a modulator of vascular PGI2 synthesis with a stimulation at low potassium concentrations.  相似文献   

14.
To determine whether thromboxane A2 released from aggregating platelets increases the contractile response of airway smooth muscle to cholinergic nerve stimulation and, if so, what the mechanism of action is, we studied in vitro bronchial segments from dogs under isometric conditions. The contractile responses to electrical field stimulation at 30 s and 1 min after the addition of autologous platelets were increased by 11.1 +/- 3.2 (SD) and 20.7 +/- 5.4%, respectively, and were accompanied by the release of thromboxane A2. These effects were inhibited either by pretreatment of platelets with indomethacin or by addition of the thromboxane A2 receptor antagonist SQ 29548. Likewise, the thromboxane A2 mimetic U 46619, in subthreshold doses (i.e., insufficient to increase base-line tension), increased electrical field stimulation-induced contraction by 18.7 +/- 4.8%. The increase was greater in the presence of a concentration of physostigmine that did not cause spontaneous contraction and was blocked by SQ 29548 but not by hexamethonium or by phentolamine. Methacholine-induced contractions were unaffected by U 46619. These results indicate that aggregating platelets, by releasing thromboxane A2, increase the airway contractile response to neural stimulation probably by the accelerated release of acetylcholine.  相似文献   

15.
C3b or lipopolysaccharide treatment of human peripheral blood monocytes in culture stimulates an early release of thromboxane B2 and a delayed release of prostaglandin E into culture supernatants. Immunoreactive thromboxane B2 release is maximal from 2–8 h, whereas prostaglandin E release is maximal from 16–24 h after stimulation of monocytes in culture. We further examined this process by comparing the time course of labelled prostaglandin E2, prostaglandin E1 and thromboxane B2 release from human monocytes which were pulse or continuously labelled with [3H]arachidonic acid and [14C]eicosatrienoic acid. The release of labelled eicosanoids was compared with the release of immunoreactive prostaglandin E and thromboxane B2. The time course of prostaglandin E2 release was virtually identical to the release of prostaglandin E1 in all culture supernatants regardless of labelling conditions. However, release of immunoreactive prostaglandin E paralleled the release of labelled prostaglandin E1 and E2 only for continuously labelled cultures. The release of labelled prostaglandin E1 and E2 from pulse labelled cultures paralleled the release of thromboxane B2 and not immunoreactive prostaglandin. In contrast, labelled and immunoreactive thromboxane B2, quantitated in the same culture supernatants, demonstrated similar release patterns regardless of labelling conditions. These findings indicate that the differential pattern of prostaglandin E and thromboxane B2 release from human monocytes is not related to a time-dependent shift in the release of prostaglandin E1 relative to prostaglandin E2. Because thromboxane B2 and prostaglandin E2 are produced through cyclooxygenase mediated conversion of arachidonic acid, these results further suggest that prostaglandin E2 and thromboxane B2 are independently metabolized in human monocyte populations.  相似文献   

16.
SKF 525-A (proadifen), a well-known inhibitor of drug metabolism and cytochrome P-450 activity, stimulated the release of prostacyclin (PGI2) from the rabbit aorta in vitro. The PGI2-stimulating activity of SKF 525-A was characterized by specific structural requirements: activity was abolished by the deletion of the terminal propyl chain and increased by its elongation into an isobutyl chain; chlorination of the phenyl rings increased the potency. SKF 525-A increased the production of PGI2 by cultured endothelial cells from bovine aorta and human umbilical vein, but had no effect on cultured smooth muscle from the bovine aortic media. In human platelets, SKF 525-A inhibited prostaglandin and thromboxane production induced by A23187, thrombin and ADP. Simultaneous stimulation of endothelial PGI2 and inhibition of platelet TxA2 represents an original pharmacological profile: SKF 525-A might thus constitute the prototype of a new class of antiplatelet drugs.  相似文献   

17.
1. In isolated perfused rat liver, infusion of UTP (20 microM) led to a transient, about sevenfold stimulation of thromboxane release (determined as thromboxane B2), which did not parallel the time course of the UTP-induced stimulation of glucose release. An increased thromboxane release was also observed after infusion of ATP (20 microM). Although the maximal increase of portal pressure following ATP was much smaller than with UTP (4.2 vs 11.5 cm H2O), the peak thromboxane release was similar with both nucleotides. 2. Indomethacin (10 microM) inhibited the UTP-induced stimulation of thromboxane release and decreased the UTP-induced maximal increase of glucose output and of portal pressure by about 30%. The thromboxane A2 receptor antagonist BM 13.177 (20 microM) completely blocked the pressure and glucose response to the thromboxane A2 analogue U-46619 (200 nM) and decreased the ATP- and UTP-induced stimulation of glucose output by about 25%, whereas the maximal increase of portal pressure was inhibited by about 50% and 30%, respectively. BM 13.177 and indomethacin inhibited the initial nucleotide-induced overshoot of portal pressure increase, but had no effect on the steady-state pressure increase which is obtained about 5 min after addition of ATP or UTP. 3. The leukotriene D4/E4 receptor antagonist LY 171883 (50 microM) inhibited not only the glucose and pressure response of perfused rat liver to leukotriene D4, but also to leukotriene C4 by about 90%. This suggests that leukotriene D4 (not C4) is the active metabolite in perfused liver and the effects of leukotriene C4 are probably due to its rapid conversion to leukotriene D4. LY 171883 also inhibited the response to the thromboxane A2 analogue U-46619 by 75-80%, whereas the response of perfused liver to leukotriene C4 was not affected by the thromboxane receptor antagonist BM 13.177 (20 microM). The glucose and pressure responses of the liver to extracellular UTP were inhibited by LY 171883 and by BM 13.177 by about 30%. This suggests that the inhibitory action of LY 171883 was due to a thromboxane receptor antagonistic side-effect and that peptide leukotrienes do not play a major role in mediating the UTP response. 4. In isolated rat hepatocytes extracellular UTP (20 microM), ATP (20 microM), cyclic AMP (50 microM) and prostaglandin F2 alpha (3 microM) increased glycogen phosphorylase a activity by more than 100%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   

19.
The present study was executed in order to get further data on the role of vessel wall constituents in prostanoid synthesis and on the effect of anorganic constituents on it. Prostacyclin and tromboxane production of rat aortic tissue slices with intact endothelium and after mechanical as well as chemical endothelium removal were studied. The effects of hypoxia and changes in the ionic milieu on the release of these prostanoids were also examined. The tissue slices were incubated in normal or in modified Krebs-Ringer solution, bubbled with 95% O2 and 5% CO2 (with the exception of the studies in hypoxic conditions). Prostacyclin and thromboxane release was determined by specific radioimmunoassay of the stable metabolites, 6-keto-PGF1 alpha and TxB2, from the incubation medium. 174 tissue samples obtained from 164 rats were studied. Mechanical removal of the endothelium increased prostacyclin production of the aortic segments about fivefolds from a basal rate of 52.9 +/- 19.4 ng/gr/min, while it had no significant effect on thromboxane release (basal rate 0.83 +/- 0.13 ng/gr/min). Treating the endothelium with 1.0 M HCl almost totally suppressed prostacyclin release. Lowering the partial oxygen tension of the incubation medium significantly decreased the production of prostacyclin, while release of TxB2 somewhat increased. Increasing the Ca2+ concentration of the medium between 0-5 mM the release of prostacyclin was augmented and the release of thromboxane was diminished. Potassium free medium caused a very large increase in prostacyclin release of the tissue slices. The results show that release of vasoactive prostanoids from isolated rat aortic wall is dependent not exclusively on the endothelium and that various methods of endothelium removal may have distinct influences on prostacyclin and thromboxane productions. The changes in anorganic constituents of the surrounding medium could massively affect prostacyclin and thromboxane production of rat aortic tissue. The alternative effects of the above listed treatments on the release of prostacyclin and thromboxane from the rat aortic wall suggest the existence of different mechanisms in the control of the production of the two major prostanoids possessing opposite physiological effects.  相似文献   

20.
We report here that the bacterial lipopolysaccharide endotoxin induces human blood monocytes in a time- and dose-dependent manner to release prodigious amounts of prostaglandins with thromboxane A2, the major metabolite formed. Cells responded to as little as 1 ng/ml lipopolysaccharide to release prostaglandin E2 and thromboxane A2 with maximal stimulation at 10 micrograms/ml. Lipopolysaccharide was found to induce increased activity of cyclooxygenase enzyme without affecting the activities of phospholipase and thromboxane synthase or the formation of 5-lipoxygenase products (e.g. leukotriene B4). The glucocorticoid dexamethasone completely blocked the lipopolysaccharide-induced prostanoid release by inhibiting the activity of monocyte cyclooxygenase. Dexamethasone did not affect phospholipase and thromboxane synthase activities or leukotriene formation. Immunoprecipitation of [35S]methionine-labeled cyclooxygenase confirmed that the effect of lipopolysaccharide and dexamethasone on the monocyte prostanoid production could be attributed to an increase or decrease, respectively, in cellular cyclooxygenase de novo synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号