首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bullfrog sympathetic ganglion cells were capable of producing action potentials (Ca spikes) in an isotonic (84 mM) CaCl2 solution. The peak level of Ca spikes showed an approximately 30 mv increase with a 10-fold increase in the Ca concentration. Na as well as Ca ions were capable of acting as charge carriers during the production of action potentials in a solution containing relatively high Ca and relatively low Na ions. A decrease in the external Ca concentration depressed the maximum rate of rise at a fixed resting potential level, and increased the maximum rate of rise of the Na spikes at a high resting potential level at which Na inactivation was completely depressed. Compared to Na spikes, Ca spikes were less sensitive to TTX and procaine. Ganglion cells were also capable of producing action potentials (Sr spikes) in an isotonic SrCl2 solution and prolonged action potentials in an isotonic BaCl2 solution, but these cells were rendered inexcitable in an isotonic MgCl2 solution. The peak level of the Sr spikes was dependent on the external Sr concentration and was insensitive to both TTX and procaine. Sr ions, like Ca ions, reduced Na inactivation during the resting state, and depressed the maximum rate of rise of the Na spikes at a high resting potential level. It was concluded that Ca (and Sr) ions exert dual actions on the membrane; namely, regulating the Na permeability and acting as charge carriers during the active state of the membrane.  相似文献   

2.
3.
4.
Excitatory postsynaptic currents (EPSCs) have been studied in voltage- clamped bullfrog sympathetic ganglion B cells. The EPSC was small, rose to a peak within 1-3 ms, and then decayed exponentially over most of its time-course. For 36 cells at --50 mV (21-23 degrees C), peak EPSC size was --6.5 +/- 3.5 nA (mean +/- SD), and the mean decay time constant tau was 5.3 +/- 0.9 ms. tau showed a small negative voltage dependence, which appeared independent of temperature, over the range -- 90 to --30 mV; the coefficient of voltage dependence was --0.0039 +/- 0.0014 mV-1 (n = 29). The peak current-voltage relationship was linear between --120 and --30 mV but often deviated from linearity at more positive potentials. The reversal potential determined by interpolation was approximately --5 mV. EPSC decay tau had a Q10 = 3. The commonly used cholinesterase inhibitors, neostigmine and physostigmine, exhibited complex actions at the ganglia. Neostigmine (1 X 10(-5)M) produced a time-dependent slowing of EPSC decay without consistent change in EPSC size. In addition, the decay phase often deviated from a single exponential function, although it retained its negative voltage dependence. With 1 x 10(-6) M physostigmine, EPSC decay was slowed by the decay phase remained exponential. At higher concentrations of physostigmine, EPSC decay was markedly prolonged and was composed of at least two decay components. High concentrations of atropine (10(-5) to 10(-4) M) produced complex alterations in EPSC decay, creating two or more exponential components; one decay component was faster and the other was slower than that observed in untreated cells. These results suggest that the time-course of ganglionic EPSC decay is primarily determined by the kinetics of the receptor-channel complex rather than hydrolysis or diffusion of transmitter away from the postsynaptic receptors.  相似文献   

5.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

6.
Hua SY  Liu C  Lu FM  Nohmi M  Kuba K 《Cell calcium》2000,27(4):195-204
How depolarization-induced Ca2+ entry or caffeine activates Ca(2+)-induced Ca2+ release (CICR) in the cytoplasm and nucleoplasm was studied by recording intracellular Ca2+ ([Ca2+]i) with a confocal microscope in cultured bullfrog sympathetic ganglion cells. The amplitude and propagation speed of voltage pulse-induced rises in [Ca2+]i were greater in the submembrane (< 5 microns depth) region than in the core region, and delayed and smaller, but significant, in the nucleus. Ryanodine and dantrolene reduced the rises in [Ca2+]i in both the cytoplasm and nucleus. A rapid application of high K+ solution induced global rises in [Ca2+]i in both the cytoplasm and nucleoplasm, which were decreased by dantrolene. Caffeine produced a slow, small rise in [Ca2+]i which grew into a global, regenerative rise both in the cytoplasm and nucleoplasm with some inward gradient in the cytoplasm. Each of the high [Ca2+]i phases during caffeine-induced [Ca2+]i oscillation began in the submembrane region, while low [Ca2+]i phases started in the core region. These results suggest that CICR activated by Ca2+ entry or caffeine occurs predominantly in the submembrane region causing an inwardly spreading Ca2+ wave or [Ca2+]i oscillations, and that the nuclear envelope can cause CICR in the nucleoplasm, which is delayed due to Ca2+ diffusion barrier at the nuclear pores.  相似文献   

7.
8.
Bradykinin is known to stimulate neurons in rat sympathetic ganglia and to enhance transmitter release from their axons by interfering with the autoinhibitory feedback, actions that involve protein kinase C. Here, bradykinin caused a transient increase in the release of previously incorporated [3H] noradrenaline from primary cultures of dissociated rat sympathetic neurons. When this effect was abolished by tetrodotoxin, bradykinin caused an inhibition of tritium overflow triggered by depolarizing K+ concentrations. This inhibition was additive to that caused by the alpha2-adrenergic agonist UK 14304, desensitized within 12 min, was insensitive to pertussis toxin, and was enhanced when protein kinase C was inactivated. The effect was half maximal at 4 nm and antagonized competitively by the B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor indomethacin and the angiotensin converting enzyme inhibitor captopril did not alter the inhibition by bradykinin. The M-type K+ channel opener retigabine attenuated the secretagogue action of bradykinin, but left its inhibitory action unaltered. In whole-cell patch-clamp recordings, bradykinin reduced voltage-activated Ca2+ currents in a pertussis toxin-insensitive manner, and this action was additive to the inhibition by UK 14304. These results demonstrate that bradykinin inhibits noradrenaline release from rat sympathetic neurons via presynaptic B2 receptors. This effect does not involve cyclooxygenase products, M-type K+ channels, or protein kinase C, but rather an inhibition of voltage-gated Ca2+ channels.  相似文献   

9.
10.
11.
In the normal heart, presynaptic cholinergic muscarinic and alpha 2-adrenergic mechanisms modify the fractional rate constant for norepinephrine (NE) synthesis (kNE), an index of sympathetic neural function. To evaluate presynaptic regulation of kNE, conscious guinea pigs subjected to normoxia and then hypoxia (n = 7-8 in each group) were pretreated with 1) vehicle; 2) a cholinergic muscarinic antagonist, methyl atropine; 3) an alpha 2-antagonist, yohimbine; or 4) a combination of the two. An increase of kNE was determined from incorporation of radiolabeled tyrosine into NE in a control period (arterial PO2 130 +/- 1.7 Torr, PCO2 36 +/- 0.5 Torr) and during a hypoxic state (PO2 49.6 +/- 1.0 Torr, PCO2 36 +/- 0.5 Torr). Hypoxia activated kNE in the atrioventricular node and right ventricular moderator band in vehicle-treated animals (P less than 0.05). Sympathetic activation was more general, however, because alpha 2-presynaptic influence acted to limit kNE in all tissues tested (P less than 0.05) except muscle, spleen, and posterior left ventricle. Cholinergic muscarinic presynaptic restraint on kNE was detected during hypoxia only in the left atrial appendage and lung (P less than 0.05). These data indicate that hypoxia increases kNE in the heart, but restraint by cholinergic muscarinic and alpha 2-adrenergic presynaptic mechanisms limits increases in neurotransmitter synthesis and noradrenergic activation regionally.  相似文献   

12.
These experiments tested the hypothesis that the normal electrophysiological properties of mature bullfrog sympathetic ganglion (BFSG) neurones are maintained by the retrograde supply of nerve growth factor-like molecules from peripheral target tissues. Maintenance of these cells in explant culture in the absence of nerve growth factor (NGF) for up to 30 days produced electrophysiological changes that resemble those previously shown to accompany axotomy in vivo. These included (i) an increase in action potential (ap) duration (spike width), (ii) a decrease in the amplitude of the afterhyperpolarization (ahp), which follows the ap, and (iii) a rapidly developing decrease in ahp duration. When murine NGF (2.5 s; 50 ng/mL) was included in the culture medium there was less attenuation of ahp amplitude. Inclusion of affinity-isolated sheep IgG antibodies (0.5 micrograms/mL; raised against murine 2.5 s NGF) in the culture medium promoted a greater reduction in ahp amplitude than was seen in the "control" explants that were maintained in the absence of NGF. By contrast, the decrease in ahp duration that occurred in control explants was neither attenuated by exposure to NGF nor was it enhanced by NGF antibodies. Also, the increase in spike width that was seen in control explants was enhanced both by murine NGF and by NGF antibodies. Although some of the data support the hypothesis that factor(s) with some similarity to NGF may be synthesized by BFSG in vitro, loss of the retrograde transport of such factors does not explain all aspects of the electrophysiological response to target deprivation and (or) axotomy.  相似文献   

13.
Calcium currents in bullfrog sympathetic neurons. II. Inactivation   总被引:4,自引:0,他引:4       下载免费PDF全文
Calcium currents in bullfrog sympathetic neurons inactivate slowly and partially during depolarizations lasting 0.5-1 s. There is also a slower (minutes) inactivation process with a broad voltage dependence. An irreversible loss of current (rundown) is prominent with low concentrations of intracellular Ca2+ buffers, with either Ca2+ or Ba2+ as the charge carrier. The extent and rate of the more rapid inactivation process are maximal near the voltage at which the peak inward current is generated, suggesting that inactivation might be Ca2+ dependent. However, inactivation occurs with either Ca2+ or Ba2+ as the charge carrier, is not prevented by strong buffering of intracellular Ca2+ with 10 mM BAPTA, and varies little as the peak current is changed 10-fold by changing the divalent ion concentration. That is, rapid inactivation is not explained by simple versions of voltage, Ca2+- or current-dependent inactivation models. A model in which ion binding within the channel allows a slower, rate-limiting inactivation process fits some but not all of the observed features of inactivation. A purely voltage-dependent three-state cyclic model fits the data if microscopic inactivation is favored by hyperpolarization.  相似文献   

14.
Currents carried by Ba2+ through calcium channels were recorded in the whole-cell configuration in isolated frog sympathetic neurons. The effect of surface charge on the apparent saturation of the channel with Ba2+ was examined by varying [Ba2+]o and ionic strength. The current increased with [Ba2+]o, and the I-V relation and the activation curve shifted to more positive voltages. The shift of activation could be described by Gouy-Chapman theory, with a surface charge density of 1 e- /140 A2, calculated from the Grahame equation. Changes in ionic strength (replacing N-methyl-D-glucamine with sucrose) shifted the activation curve as expected for a surface charge density of 1 e-/85 A2, in reasonable agreement with the value from changing [Ba2+]o. The instantaneous I-V for fully activated channels also changed with ionic strength, which could be described either by a low surface charge density (less than 1 e-/1,500 A2), or by block by NMG with Kd approximately 300 mM (assuming no surface charge). We conclude that the channel permeation mechanism sees much less surface charge than the gating mechanism. The peak inward current saturated with an apparent Kd = 11.6 mM for Ba2+, while the instantaneous I-V saturated with an apparent Kd = 23.5 mM at 0 mV. This discrepancy can be explained by a lower surface charge near the pore, compared to the voltage sensor. After correction for a surface charge near the pore of 1 e-/1,500 A2, the instantaneous I-V saturated as a function of local [Ba2+]o, with Kd = 65 mM. These results suggest that the channel pore does bind Ba2+ in a saturable manner, but the current-[Ba2+]o relationship may be significantly affected by surface charge.  相似文献   

15.
16.
The LN potential (slow EPSP) of bullfrog sympathetic ganglia was restored while the P potential (slow IPSP) was not restored by perfusion with a sodium-free lithium or hydrazinium solution after a prolonged perfusion with a sodium-free sucrose solution. Similarly, the muscarinic ACh-depolarization was restored while the muscarinic ACh-hyperpolarization was not restored in a lithium or hydrazinium medium. These results support the hypothesis that the slow IPSP is produced by the activation of an electrogenic sodium pump.  相似文献   

17.
A 2 min sample of an intracellular recording of in vivo synaptic activity from a vasomotor C-neuron in a bullfrog sympathetic ganglion was converted to a series of stimulus pulses. This physiologically derived activity was used to stimulate preganglionic C-fibres of similar ganglia studied in vitro. Intracellular recordings were made from exocrine B-cells within the ganglia. Although they do not receive fast, nicotinic synaptic input from preganglionic C-fibres, B-cell excitability was profoundly increased by stimulation of C-fibres with physiologically derived activity. Also, subthreshold depolarizing current pulses that failed to generate action potentials in B-cells under control conditions almost always generated action potentials whilst C-fibres were activated. These effects were attenuated or prevented by the luteinizing hormone releasing hormone antagonist, [D-pyro-Glu1,D-Phe2,D-Trp3,6]-LHRH (70 microM). The physiological release of luteinizing hormone releasing hormone from C-fibres therefore causes an interaction between vasomotor and exocrine outflow within a paravertebral sympathetic ganglion.  相似文献   

18.
19.
K S Elmslie  W Zhou  S W Jones 《Neuron》1990,5(1):75-80
LHRH (chicken II luteinizing hormone-releasing hormone) partially reduces calcium currents and slows the activation kinetics of part of the remaining current in frog sympathetic neurons. The effects of LHRH are mimicked by intracellular dialysis with GTP-gamma-S. A strong depolarization can temporarily reverse the effects of LHRH or GTP-gamma-S: activation kinetics return to normal, and the amplitude of the current is increased (facilitation). Facilitation develops rapidly (tau = 4-6 ms at greater than +30 mV) and decays more slowly (t 1/2 = 60 ms at -80 mV). Tail currents in LHRH are smaller and faster than in the control, and these effects are partially reversed by facilitation. These results can be explained by a model in which a fraction of the channels is shifted into a "reluctant" gating mode, where opening requires stronger depolarization. If this mechanism is at the root of presynaptic inhibition, our results predict that inhibition of transmitter release would be overcome during bursts of high frequency activity.  相似文献   

20.
M-current is a time- and voltage-dependent potassium current which is suppressible by muscarinic receptor activation. We have used curve fitting and noise analysis to determine if macroscopic M-currents deviate from a previously predicted simple two-state kinetic scheme. The M-current was best described by three kinetically distinct components: 'fast' (tau 0), 'intermediate' (tau 1) and 'slow' (tau 2) time constants. The 'fast' (tau 0) and 'intermediate' (tau 1) components were identified from the spectra of M-current noise at potentials positive to the cells' resting membrane potential. The 'intermediate' (tau 1) and 'slow' (tau 2) components were seen by curve fitting M-current deactivation currents. The 'intermediate' (tau 1) time constant was voltage dependent (decreasing e-fold in 23 mV), but voltage dependence of the 'fast' (tau 0) and 'slow' (tau 2) components was not obvious. All kinetic components were sensitive to muscarine, with the 'intermediate' (tau 1) and 'slow' (tau 2) being equally so. These data suggest that all components may derive from the same channel population, and that the M-channel may have at least four kinetic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号