首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersal patterns are important in metapopulation ecology because they affect the dynamics and survival of populations. However, because little empirical information exists on dispersal behaviour of individuals, theoretical models usually assume random dispersal. Recent empirical evidence, by contrast, suggests that the butterfly Maniola jurtina uses a non‐random, systematic dispersal strategy, can detect and orient towards habitat from distances of 100–150 m, and prefers a familiar habitat patch over a non‐familiar one (‘homing behaviour’). The present study (1) investigated whether these results generalise to another butterfly species, Pyronia tithonus; and (2) examined the cause of the observed ‘homing behaviour’ in M. jurtina. P. tithonus used a similar non‐random, systematic dispersal strategy to M. jurtina, had a similar perceptual range for habitat detection and preferred a familiar habitat patch over a non‐familiar one. The ‘homing behaviour’ of M. jurtina was found to be context‐dependent: individual M. jurtina translocated within habitat did not return towards their capture point, whereas individuals translocated similar distances out of habitat did return to their ‘home’ patch. We conclude that butterfly ‘homing behaviour’ is not based on an inherent preference for a familiar location, but that familiarity with an area facilitates the recognition of suitable habitat, towards which individuals orient if they find themselves in unsuitable habitat. Contrary to conventional wisdom, we suggest that frequent, short ‘excursions’ over habitat patch boundaries are evolutionarily advantageous to individuals, because increased familiarity with the surrounding environment is likely to increase the ability of a straying animal to return to its natural habitat, and to reduce the rate of mortality experienced by individuals attempting to disperse between habitat patches. We discuss the implications of the non‐random dispersal for existing metapopulation models, including models of the evolution of dispersal rates.  相似文献   

2.
Understanding survival and cause-specific mortality of native and translocated animals can help biologists design more effective recovery programs. We estimated survival rates for 181 native mountain quail (Oreortyx pictus) in west-central Idaho from 1992 to 1996 and for 199 translocated mountain quail in western Idaho and eastern Washington in 2005 and 2006. Spring–summer survival of native birds over 4 yr ranged from 0.210 (SE = 0.116) to 0.799 (SE = 0.103) and fall–winter survival in 2 yr was 0.523 (SE = 0.089) and 0.244 (SE = 0.084). Annual survival rates were 0.418 (SE = 0.088) and 0.174 (SE = 0.065). Spring–summer survival rate of translocated birds was 0.215 (SE = 0.044) in 2005 and 0.059 (SE = 0.021) in 2006. We modeled biweekly survival as a function of sex, age, movement rate, native versus translocated status, and linear time trend, and then we added year and 3 weather covariates (mean biweekly precipitation and maximum and minimum temperatures). Year and climate variables improved the a priori top model which included movement rate and native versus translocated status. Higher mortality rates due to predation coincided with movements to breeding habitat in late winter, periods of higher temperatures in the spring and summer, and periods of higher precipitation and colder temperatures during the fall–winter seasons. High movement rates of native birds in winter to avoid snow and by translocated birds when dispersing may have led to greater exposure to predators and consequently lower survival rates. Mountain quail can experience low and variable survival, stressing the potential need for multiple years of releases in restoration efforts in the eastern portion of their range. More attention is needed to identify optimal habitat (including nest sites) for restoring mountain quail populations to reduce movements, lower mortality risks, and provide conditions for withstanding periods of unfavorable weather. © 2011 The Wildlife Society.  相似文献   

3.
《农业工程》2014,34(1):79-83
Tibetan antelopes, Pantholops hodgsoni, are endemic to the high-altitude Qinghai-Tibet Plateau of western China. Because of human activities and illegal hunting, the population has decreased sharply in recent years. So the population conservation and enlargement becomes a puzzle to the scientists and government. There are some individuals in several zoos in high altitude area, however, ex situ conservation has never been carried out on a large scale. There are two questions that should be popularized before ex situ conservation is performed. Whether the food content in ex situ area similar to native area or not is the preliminary one, and the other is that whether Tibetan antelope can coexist with other ungulates distributed in ex situ or not. The aim of this study was to identify the food habit of Tibetan antelope in native (Kekexili area, KA) and ex situ (Tiebujia area, TA) areas and the food competition between Tibetan antelope and ungulates in KA and TA. The data indicate that fecal samples provide the most convenient and uninjurious sources to predict the food habit of Tibetan antelope. C3 plants, such as Gramineae, Cyperaceae, Compositae, Leguminosae and Cruciferae, were selected by antelopes both in KA and TA tested with stable isotope analysis method. Tibetan antelopes have high competition with ungulates distributed in KA but low competition with ungulates living in TA. Our results provide a tempting foreground for chiru’s ex situ conservation integrated protecting strategies into the development of appropriate grazing, especially in brittle ecosystem.  相似文献   

4.
The translocation of wild animals is a strategy frequently used in the conservation and management of natural populations. The aim of this study was to evaluate the impact of translocation (population supplementation) and habitat improvement on the abundance of European wild rabbit Oryctolagus cuniculus . We used eight open plots with different habitat treatments: two with increased shelter, two with increased food, two with increased shelter and food and two without habitat treatment (control plots). We translocated wild rabbits during 3 consecutive years, each year in four of the eight plots, with the remaining plots serving as control for the translocation treatment. Rabbit abundance (translocated plus native rabbits) was calculated by means of pellet counts, and the results were evaluated mainly by generalized linear mixed models. We found that rabbit abundance was determined primarily by habitat improvement. Rabbits were more abundant in treated than in control plots, and most abundant in the plots where food availability was increased. This effect persisted throughout the year. Translocation also increased abundance, but this effect was the strongest where shelter and food had also been improved and declined and disappeared after breeding. These findings suggest that the habitat is an important factor for rabbit abundance, with food availability being the prime factor regulating densities. Moreover, translocations on their own are only effective in the short term in situations in which factors limiting population growth (e.g. disease and predation) have not been corrected. Translocations should be carried out in conjunction with improvements in release habitat as rabbit densities will depend on the maximum carrying capacity of the habitat.  相似文献   

5.
A feeding experiment was conducted to test if Bongo antelopes, being selective feeders searching for clumped quality food, show similar behavior changes as primates under similar conditions. One group of 3 females and 3 calves of Dvur Kralove Zoo was either fed clumped (all food, i.e., leaves and branches of 4 species of tree plus rye grass in one heap), or the same amount distributed over as many heaps as animals present. No increase in agonistic interactions under clumped conditions was found, but non-agonistic and sociopositive patterns increased significantly. Intake of low quality food increased under clumped conditions. Social distances and enclosure use were not significantly different. These findings are in accordance with predictions from models developed for primate feeding strategies, and suggest that selectively feeding antelopes possess behavioral mechanisms for tension-reduction similar to “contest-type” primates. Zoo Biol 16:237–245, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Alien species can affect native species through several ecological processes such as competition. Here we tested the hypothesis of interspecific competition for space and food resources between the native Eurasian red squirrel and the invasive Pallas’s squirrel introduced in Italy. We used an experimental study design comparing space and habitat use and body condition parameters of red squirrels between areas of co-occurrence with the Pallas’s squirrel and areas without it. There were no differences in mean home range size of red squirrels between red-only areas and red-Pallas. However, when Pallas’s squirrels were removed, the red squirrels increased their home ranges. Moreover, in the area of syntopy, red squirrels had a higher degree of intraspecific home range overlap than in the red-only area. We also found indirect evidence for competition for food with red squirrels having a poorer body condition when co-occurring with the alien species. We analyzed the body mass and size of red squirrels in the two areas and our results showed that red squirrels had a reduced body mass and size when in syntopy, confirming that the interspecific competition does not allow red squirrels to reach the optimum body condition that they would have if the competitor was not present. Moreover, tree-species niche overlap was very high and both species fed primarily on the same tree seeds. Differences in vegetation cover between areas are discussed. This is the first study that confirms the invasiveness of the Pallas’s squirrel also in terms of capability to compete with native species.  相似文献   

7.
《新西兰生态学杂志》2011,34(2):237-246
An understanding of the mechanisms influencing habitat selection in reintroduced bird populations is fundamental for successful translocation programmes. Plant species composition, abundance, structure and food availability are likely to influence animal movement and habitat choice, but few studies have evaluated their combined effect on habitat selection of translocated birds. Stewart Island robins (Petroica australis rakiura) and South Island saddlebacks (Philesturnus carunculatus carunculatus) are two threatened New?Zealand bird species that have been reintroduced to Ulva Island (Stewart Island). We hypothesised that their initial settlement patterns were driven by habitat quality. We tested this hypothesis by comparing habitat components between occupied and unoccupied habitats as the population grew after initial tanslocation. We also modelled probabilities of site selection as a function of the composition and structure of vegetation, availability of food (invertebrate composition) and nesting resources (cavity type). Founding pairs of both species first established territories in coastal habitat in the western part of the island, which is characterised by structurally complex broadleaved vegetation. Birds also selected sites with a greater abundance and diversity of food resources. Thus in the early stages of population establishment robins and saddlebacks appear to select high quality habitat that offers enhanced cover and foraging opportunities.  相似文献   

8.
Digging and burrowing mammals modify soil resources, creating shelter for other animals and influencing vegetation and soil biota. The use of conservation translocations to reinstate the ecosystem functions of digging and burrowing mammals is becoming more common. However, in an increasingly altered world, the roles of translocated populations, and their importance for other species, may be different. Boodies (Bettongia lesueur), a commonly translocated species in Australia, construct extensive warrens, but how their warrens affect soil properties and vegetation communities is unknown. We investigated soil properties, vegetation communities, and novel ecosystem elements (specifically non‐native flora and fauna) on boodie warrens at three translocation sites widely distributed across the species’ former range. We found that soil moisture and most soil nutrients were higher, and soil compaction was lower, on warrens in all sites and habitat types. In contrast, there were few substantial changes to vegetation species richness, cover, composition, or productivity. In one habitat type, the cover of shrubs less than 1 m tall was greater on warrens than control plots. At the two sites where non‐native plants were present, their cover was greater, and they were more commonly found on boodie warrens compared to control plots. Fourteen species of native mammals and reptiles were recorded using the warrens, but, where they occurred, the scat of the non‐native rabbit (Oryctolagus cuniculus) was also more abundant on the warrens. Together, our results suggest that translocated boodie populations may be benefiting both native and non‐native flora and fauna. Translocated boodies, through the construction of their warrens, substantially alter the sites where they are released, but this does not always reflect their historic ecosystem roles.  相似文献   

9.
It is generally expected that, in environments with pronounced seasonal resource peaks, birds’ reproductive success will be maximised when nestlings’ peak food demand coincides with the timing of high food availability. However in certain birds that stay resident over winter, earlier breeding leads juveniles to join the winter flock earlier, which by the prior residence effect increases their success in breeding territory competition. This trade-off between reproduction and competition may explain why, in certain species, breeding phenology is earlier and asynchronous with the resource. This study extends a previous model of the evolution of breeding phenology in a single habitat type to a landscape with two habitat types: ‘early’ and ‘late’ resource phenology. The offspring’s natal habitat type has a carryover effect upon their competitive ability regardless of which habitat type they settle in to potentially breed. We find that, when the difference in resource phenology between habitats is small (weak carryover effect), breeding phenology in the late habitat evolves to occur earlier and more asynchronously than in the early habitat, to compensate for the competitive disadvantage to juveniles raised there. However if the difference is large (strong carryover effect), then the reproductive cost of earlier breeding outweighs the benefit of the compensation, so instead breeding phenology in the late habitat evolves to become more synchronous with the resource. Recruitment is generally asymmetric, from early to late habitat type. However if the early habitat is less frequent in the landscape or produces fewer offspring, then the asymmetry is reduced, and if there is some natal habitat-type fidelity, then recruitment can have an insular pattern, i.e. most recruits to each habitat type come from that same habitat type. We detail the different scenarios in which the different recruitment patterns are predicted, and we propose that they have implications for local adaptation.  相似文献   

10.
Midwinter waterfowl survey data indicates a long-term decline in the number of wintering American black ducks (Anas rubripes), potentially due to habitat limitations. In order for future estimates of carrying capacity to be determined, it is critical that regional food availability is estimated. We collected pairs of habitat core samples (n = 510) from 5 habitat types in southern New Jersey, USA, during October, January, and April 2006–2008 to estimate resource availability and variability. We collected upper gastrointestinal tracts from hunter-killed birds (n = 45) and late season collections (n = 19) to identify food items and limited our estimates of resource availability to only winter food items; thereby reducing the availability of seed foods found in our core samples by 38% and animal foods by 96%. We did not detect differences in years or sampling period, but did between habitat types. Mudflat habitat had the greatest availability of invertebrate and vertebrate food items and appeared to supply the bulk of energy to black ducks wintering in southern New Jersey. We suggest conservation efforts to be focused on restoring or enhancing mudflat habitat as an integral component of an ecologically functioning salt marsh to increase food availability. © 2011 The Wildlife Society.  相似文献   

11.
EB Cohen  FR Moore  RA Fischer 《PloS one》2012,7(7):e41818
Movement patterns during songbird migration remain poorly understood despite their expected fitness consequences in terms of survival, energetic condition and timing of migration that will carry over to subsequent phases of the annual cycle. We took an experimental approach to test hypotheses regarding the influence of habitat, energetic condition, time of season and sex on the hour-by-hour, local movement decisions of a songbird during spring stopover. To simulate arrival of nocturnal migrants at unfamiliar stopover sites, we translocated and continuously tracked migratory red-eyed vireos (Vireo olivaceus) throughout spring stopover with and without energetic reserves that were released in two replicates of three forested habitat types. Migrants moved the most upon release, during which time they selected habitat characterized by greater food abundance and higher foraging attack rates. Presumably under pressure to replenish fuel stores necessary to continue migration in a timely fashion, migrants released in poorer energetic condition moved faster and further than migrants in better condition and the same pattern was true for migrants released late in spring relative to those released earlier. However, a migrant's energetic condition had less influence on their behavior when they were in poor quality habitat. Movement did not differ between sexes. Our study illustrates the importance of quickly finding suitable habitat at each stopover site, especially for energetically constrained migrants later in the season. If an initial period prior to foraging were necessary at each stop along a migrant's journey, non-foraging periods would cumulatively result in a significant energetic and time cost to migration. However, we suggest behavior during stopover is not solely a function of underlying resource distributions but is a complex response to a combination of endogenous and exogenous factors.  相似文献   

12.
The invasion of cane toads (Bufo marinus) across tropical Australia has fatally poisoned many native predators; the most frequent victims may be tadpoles of native frogs, which die when they consume the toxic eggs of the toads. Field studies have documented high and species‐specific mortality of tadpoles following toad spawning. To clarify the determinants of tadpole vulnerability, we conducted 1593 laboratory trials in which single tadpoles were exposed to 10 toad eggs, either with or without an alternative food source (lettuce). At least some tadpoles within all 15 species tested consumed toad eggs. Interspecific variance in survival rates (from 0 to >70%) was driven by feeding responses not by physiological tolerance to toxins: almost all native tadpoles that consumed eggs died rapidly. Tadpole mortality was decreased by the presence of an alternative food source in four species, increased in two species, and not affected in seven species. In three of four taxa where we tested both small (early‐stage) and large (late‐stage) tadpoles, both mean survival rates and the effects of alternative food on survival shifted with tadpole body size. Trials with one species (Limnodynastes convexiusculus) showed no significant inter‐clutch variation in feeding responses or tolerance to toxins. Overall, our data show that cane toad eggs are highly toxic to native anuran tadpoles, but that whether or not a tadpole is killed by encountering toad eggs depends upon a complex interaction between the native anuran's species, its body size, and whether or not alternative food was present. In nature, larval vulnerability also depends upon the seasonal timing and location of spawning events, and habitat selection and foraging patterns of the tadpoles. Our results highlight the complexity of vulnerability determinants, and identify ecological factors (rather than physiology or feeding behaviour) as the primary determinants of cane toad impact on native tadpoles.  相似文献   

13.
This study examines whether in nature endangered quino checkerspot (Euphydryas editha quino) larvae will return to diapause and if so where they choose to hide. Multiple years of diapause probably help larvae survive drought years and sites chosen have high survival value to the species. Ninety square meters of habitat were created by removing non native plants and replacing them with natives found at checkerspot occupied sites. During the 2005–2006 winter 1,000 post-diapause larvae were released. From these larvae 31 adults (20 males and 11 females) developed over a 2.5 month period (March 20–June 6) from 41 pupae. One chrysalis was parasitized by a parasitic wasp Pteromalus puparum (L.) in the family Pteromalidae, one was partially eaten by an animal, while the remaining eight pupae died of unknown causes. Thirty quadrats (1 square meter each) were cleared of vegetation, leaf and branch litter, rocks, and checkerspot larvae from July 5 to August 1, 2006. Forty-nine larvae were found that returned to diapause. Most larvae (31) chose to make shelters on California buckwheat, which is not a checkerspot food plant, two to five cm above the ground. One shelter had 22, another had seven, and two others had single larvae. Five of 10 larvae found in leaf litter below California buckwheat were crawling and not associated with shelters suggesting they had been dislodged from shelters. California buckwheat may be important in habitat restoration for the checkerspot, particularly at sites below 900 meters elevation where summer conditions are hot and dry. No additional larvae were found the following spring, when they should have exited diapause. Therefore 910 (91%) larvae were lost to some undocumented form of mortality.  相似文献   

14.
1. Cross‐ecosystem movements of resources, including detritus, nutrients and living prey, can strongly influence food web dynamics in recipient habitats. Variation in resource inputs is thought to be driven by factors external to the recipient habitat (e.g. donor habitat productivity and boundary conditions). However, inputs of or by ‘active’ living resources may be strongly influenced by recipient habitat quality when organisms exhibit behavioural habitat selection when crossing ecosystem boundaries. 2. To examine whether behavioural responses to recipient habitat quality alter the relative inputs of ‘active’ living and ‘passive’ detrital resources to recipient food webs, we manipulated the presence of caged predatory fish and measured biomass, energy and organic content of inputs to outdoor experimental pools of adult aquatic insects, frog eggs, terrestrial plant matter and terrestrial arthropods. 3. Caged fish reduced the biomass, energy and organic matter donated to pools by tree frog eggs by ~70%, but did not alter insect colonisation or passive allochthonous inputs of terrestrial arthropods and plant material. Terrestrial plant matter and adult aquatic insects provided the most energy and organic matter inputs to the pools (40–50%), while terrestrial arthropods provided the least (7%). Inputs of frog egg were relatively small but varied considerably among pools and over time (3%, range = 0–20%). Absolute and proportional amounts varied by input type. 4. Aquatic predators can strongly affect the magnitude of active, but not passive, inputs and that the effect of recipient habitat quality on active inputs is variable. Furthermore, some active inputs (i.e. aquatic insect colonists) can provide similar amounts of energy and organic matter as passive inputs of terrestrial plant matter, which are well known to be important. Because inputs differ in quality and the trophic level they subsidise, proportional changes in input type could have strong effects on recipient food webs. 5. Cross‐ecosystem resource inputs have previously been characterised as donor‐controlled. However, control by the recipient food web could lead to greater feedback between resource flow and consumer dynamics than has been appreciated so far.  相似文献   

15.
Human-carnivore systems are built on multi-scalar complex processes often resulting in conflicts that force wildlife managers to address what are conceived as problem individuals. In North America, the grizzly bear (Ursus arctos) is often involved in human-bear conflict with management measures such as translocations, in which problem individuals are moved to new areas, being used to reduce conflict risk. While translocations offer a non-lethal alternative to managing conflict animals, they show varying levels of success. Our objective was to perform a novel assessment of grizzly bear translocation success through agent-based simulation by evaluating how familiarity with landscape features coupled with behavioral traits affects the way individuals use resources in a new environment. Our results showed that bears translocated to familiar habitat used high-quality habitat more than bears moved to areas with unfamiliar landscape characteristics. Increased exploration led to greater use of high-quality habitat in the long run but resulted in reduced use of high-quality habitat during the first two years following a translocation. Habitat quality use depended on scale, with bears translocated to less familiar environments accessing higher quality areas at a finer scale than bears translocated to familiar habitats. We emphasize the need to account for wildlife behavioral traits and habitat characteristics at multiple scales when selecting suitable translocation locations. Understanding the role of factors such as these on translocation outcome will help ensure the success of translocations not only as a method for managing problem wildlife, but also for population restoration, species reestablishment, and conservation translocations across the globe.  相似文献   

16.
17.
Food abundance is an important determinant in habitat and patch selection but food accessibility and detectability is less often considered. Foraging on more cryptic seeds may increase predation risk by increasing the length of head down periods. Habitat structure may interact with this as birds are less able to detect predators with their head lowered in riskier obstructed habitats. We investigated patch choice in chaffinches Fringilla coelebs foraging in obstructed and open habitats and artificially manipulated the search times of seeds by colouring them either yellow or black. One trial consisted of a choice between the conspicuous seed in the open patch, and the cryptic seed in the obstructed patch; in the second trial the treatments were reversed. Individuals were more willing to forage in the obstructed habitat when the yellow seeds were present (43% of pecks made in the obstructed patch) than when the black seeds were present (18% of pecks in the obstructed patch). Differences in search time are likely to explain this result: yellow seeds were located almost twice as fast (1.26±0.60 seconds) as black ones (2.36±0.88 seconds). This experiment shows that individual foraging decisions may be influenced not only by food abundance but by the properties of individual food items (in this case seed crypsis) and the structure of the habitat they are present in.  相似文献   

18.
In contrast to many studies on the habitat quality of road verges for butterflies in relation to management regimes, little is known about whether road verges also function as corridors linking fragmented grassland habitats. We experimentally compared movements of four model species, two small blues and two medium browns, with one habitat specialist and one habitat generalist in each size and phylogenetic category. A total of 425 individual butterflies were caught and translocated to an experimental arena with three 2 × 30 m grassland strips that approximated road verges; one with adult feeding resources, one sheltered from the wind, and one without food and shelter. Movements in grassland strips were compared to movements in continuous grassland habitat. Results indicated that (1) individuals did not use the low-quality strip, (2) only specialists used strips but not in the same way according to their size and phylogenic category, and (3) strip use could not be predicted from habitat selection. This finding supports the idea that corridors of intermediate quality are the most efficient to promote dispersal rates in fragmented landscapes. Road verges cover 250,000 ha in Sweden, which is nearly the total amount of seminatural grasslands. Our results suggest that, to benefit butterfly dispersal among grassland patches, road verges should be managed to create a more favourable microclimate (e.g. sheltered from wind, high temperatures).  相似文献   

19.
Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev's electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.  相似文献   

20.
Logging negatively affects the threatened forest-dwelling caribou (Rangifer tarandus caribou) through its positive effects on large predator populations. As recruitment is a key component of caribou population growth rate, we assessed calving rates of females and calf survival rates during the most critical period for calf survival, the calving period. We also identified causes of calf mortality and investigated the influence of predation risk, food availability, and human disturbance on habitat selection of females during the calving period at both the home-range and forest stand scales. We hypothesized that caribou should display habitat selection patterns to reduce predation risk at both scales. Using telemetry, we followed 22 females and their calves from 2004 to 2007 in a highly managed study area in Québec, Canada. Most females (78.5 ± 0.05 [SE]) gave birth each year, but only 46.3 ± 8.0% of the calves survived during the first 50 days following birth, and 57.3 ± 14.9% of them died from black bear (Ursus americanus) predation. At the home-range scale, caribou selected calving areas located at upper slope positions and avoided high road density areas. Surprisingly, they also selected the forested habitat type having the lowest lateral cover (mixed and deciduous stands) while avoiding the highest cover (regenerating conifer stands). At the forest stand scale, caribou selected areas located at relatively high elevations and with a lower basal area of black spruce trees. The selection of upper slope positions likely favored spatial segregation between calving females and wolves (Canis lupus) but not black bear. Our results suggest that calving females used areas from which they could visually detect approaching predators. While wolf avoidance appeared to be effective in a highly managed landscape, caribou did not appear to have adjusted their predator avoidance strategy to the recent increase in black bear abundance, who have benefited from increased food abundance. This situation requires focused attention from wildlife managers as logging activities are progressing towards the north within the core of forest-dwelling caribou range. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号