首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The mineralized scale of the freshwater sunfish Lepomis macrochirus (bluegill) contains a Gla protein. The protein was identified in extracts of scale by a new colorimetric assay for Gla-containing proteins. The protein was purified by gel filtration chromatography followed by reversed phase high performance liquid chromatography (HPLC). Several tests establish the identity of scale Gla protein and bone Gla protein (BGP). First, the proteins exhibit identical mobilities on electrophoresis and by reversed phase HPLC. Second, they have identical amino-terminal amino acid sequences. Finally, identical peptides are generated by proteolytic digestion. The 45-residue amino acid sequence of the bone Gla protein from L. macrochirus has a high sequence homology with swordfish, as well as homology to mammalian bone Gla protein. The BGP of bluegill shares with swordfish BGP a truncated NH2 terminus and an extended COOH terminus. These features may be unique to fish, as they have not been observed in terrestrial vertebrates. The bluegill BGP is the first vitamin K-dependent protein to contain a non-gamma-carboxylated residue to the NH2-terminal side of all of its Gla residues. In all other vitamin K-dependent proteins, Gla always appears to the NH2-terminal side of the first Glu. The implications of this result are discussed. The bluegill rib bone is curiously enriched in BGP, as are other mineralized tissues of this species. One hypothesis is that this may be due to the acellular nature of the bone in this species. The abundance of BGP in the bones of this fish may provide clues to the unknown function of this bone protein.  相似文献   

2.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

3.
The complete amino acid sequence of bovine bone matrix Gla protein (MGP) was determined by automatic sequence analysis of the intact protein and of peptides isolated from tryptic and BNPS-skatole digests. This 79-residue, vitamin K-dependent protein contains a single disulfide bond and 4.8 gamma-carboxyglutamate (Gla) residues, one each at positions 37, 41, 48, and 52, and 0.8 Gla and 0.2 Glu at position 2. There is sufficient sequence homology between MGP and bone Gla protein (BGP) to indicate that these two bovine bone proteins arose by gene duplication and subsequent divergent evolution. Although MGP has a very low solubility in water compared to BGP, there is no hydrophobic domain in MGP which could account for its insolubility, and the overall fraction of hydrophobic residues is 32% for MGP compared to 43% for BGP. MGP is the first vitamin K-dependent protein to be discovered which has several non-gamma-carboxylated residues to the NH2-terminal side of its Gla residues. The presence of NH2-terminal Glu residues between the putative targeting domain for the gamma-carboxylase in the MGP leader sequence and the mid-molecule Gla residues suggests that the gamma-carboxylase may have additional, as yet unrecognized, specificity requirements which determine the susceptibility of Glu residues for gamma-carboxylation.  相似文献   

4.
Coagulation factor X is a vitamin K-dependent protein composed of discrete domains or modules. A proteolytically modified derivative of factor X that lacks the NH2-terminal gamma-carboxyglutamic acid (Gla)-containing region retains one Ca2+ binding site. To localize this Gla-independent Ca2+ binding site and to facilitate future studies aimed at elucidating structure-function relationship in the factor X molecule, we have devised a method to isolate the first beta-hydroxyaspartic acid (Hya)-containing epidermal growth factor (EGF)-like domain from proteolytic digests of bovine factor X performed under strictly controlled conditions. The EGF-like domain, corresponding to residues 45-86 in bovine factor X, was obtained in more than 50% recovery, and was at least 98% homogeneous as judged by NH2-terminal sequence analysis. Ca2+ binding to the isolated EGF-like domain was studied by 1H NMR spectroscopy. On binding of Ca2+ to the domain the resonances from Tyr-68 centered at 6.8 ppm were affected. The Ca2+ concentration dependence of the chemical shift was used to calculate the Ca2+ binding constant, resulting in a K alpha of 4 X 10(3) M-1 at pH 8.5 and 1 X 10(3) M-1 at pH 7.4, the higher value presumably reflecting an increase in negative surface charge due to deprotonation of a histidine residue with a pK alpha of 7.4. The NMR spectra gave no evidence of a conformational change in the EGF-like domain between pH 6 and 8.5.  相似文献   

5.
Coagulation factor X is a multidomain proenzyme of a serine protease. Calcium ions bind to the vitamin K-dependent gamma-carboxyglutamic acid (Gla) residues and to a site in the NH2-terminal of two epidermal growth factor (EGF)-like domains. To study structure-function relationships in the NH2-terminal part of factor X and to determine the structure of isolated domains, we have developed methods that allow the subsequent isolation of the first or both EGF-like domains with or without an attached Gla domain from controlled proteolytic digests of the protein. The Ca2(+)-induced changes of the intrinsic protein fluorescence were measured to elucidate whether the isolated fragments retain their native conformation. Changes in the fluorescence caused by Ca2+ binding were found to result from perturbations of the environment of the Trp residue in position 41. Calcium ion binding to the Gla-containing region linked to the NH2-terminal EGF-like domain was identical with that to intact factor X, indicating a native orientation of the ligand binding groups in the fragment. In contrast, the isolated Gla peptide had a lower affinity for Ca2+, suggesting that the NH2-terminal EGF-like domain serves as a scaffold for the folding of the Gla region. Similarly, the presence of the Gla region was found to increase the affinity of the Gla-independent site in the first EGF-like domain for Ca2+. The metal ion-induced resistance against chymotryptic cleavage COOH-terminal of Tyr-44 in intact factor X is similar in the isolated fragment that contains the Gla region linked to one EGF-like domain, indicating a native conformation of the fragment in the presence of Ca2+. Furthermore, the Gla-independent metal ion binding site binds Ca2+ but does not appear to bind Mg2+.  相似文献   

6.
Gamma-carboxyglutamic acid, formed during the post-translational vitamin K-dependent carboxylation of glutamic acid residues in polypeptides has been identified not only in coagulation factors II (prothrombin),, VII, IX and X [1--4], but also in several other plasma proteins [3,5,6] and in protein of bone [7,8] and kidney [9]. In rat liver, carboxylation is mediated through an enzyme system located in the microsomal membrane [10]. The enzyme system requires CO2, O2 and the reduced (hydroquinone) form of the vitamin, as well as a suitable substrate [10,11]. Rat liver microsomes also convert vitamin K1 (phylloquinone) to its stable 2,3-epoxide [12]. Several studies suggest a link between carboxylation and the formation of the epoxide [12--14]. In one of these [14], a survey of rat tissues for vitamin K1 epoxidation revealed that, in addition to liver, this activity was also possessed by kidney, bone, spleen and placenta. In preliminary experiments, vitamin K-dependent carboxylating systems have been found in rat and chick kidney [9], in chick bone [15] and in rat spleen and placenta (unpublished observations). In this communication, we describe some of the basic characteristics of the vitamin K-dependent carboxylating system as found in human placental microsomes.  相似文献   

7.
A biosynthetic precursor to rat bone gamma-carboxyglutamic acid protein (BGP) was isolated from warfarin-treated ROS 17/2 osteosarcoma cells by antibody affinity chromatography followed by reverse phase high performance liquid chromatography. Thirty-two residues of its NH2-terminal sequence were determined by gas-phase protein sequence analysis. Comparison of this sequence with the known structure of rat BGP established that the intracellular precursor is a 76-residue molecule of Mr = 9120 that differs from 6000-Da bone BGP in having an NH2-terminal extension of 26 residues. This precursor appears to be generated from the primary translation product by cleavage of a hydrophobic signal peptide and is the probable substrate for gamma-carboxylation by virtue of its accumulation in the presence of warfarin. The putative targeting region for gamma-carboxylation previously identified in the leader sequences of vitamin K-dependent proteins is found in the propeptide portion of the precursor. Since the immunoreactive component secreted by warfarin-treated cells is identical in sequence to the 6000-Da BGP from bone, propeptide cleavage from the precursor is independent of gamma-carboxylation and precedes secretion of BGP from the cell.  相似文献   

8.
R Wallin  F Rossi  R Loeser    L L Key  Jr 《The Biochemical journal》1990,269(2):459-464
An osteoblast-like human osteosarcoma cell line (U2-OS) has been shown to possess a vitamin K-dependent carboxylation system which is similar to the system in human HepG2 cells and in liver and lung from the rat. In an 'in vitro' system prepared from these cells, vitamin K1 was shown to overcome warfarin inhibition of gamma-carboxylation carried out by the vitamin K-dependent carboxylase. The data suggest that osteoblasts, the cells involved in synthesis of vitamin K-dependent proteins in bone, can use vitamin K1 as an antidote to warfarin poisoning if enough vitamin K1 can accumulate in the tissue. Five precursors of vitamin K-dependent proteins were identified in osteosarcoma and HepG2 cells respectively. In microsomes (microsomal fractions) from the osteosarcoma cells these precursors revealed apparent molecular masses of 85, 78, 56, 35 and 31 kDa. When osteosarcoma cells were cultured in the presence of warfarin, vitamin K-dependent 14C-labelling of the 78 kDa precursor was enhanced. Selective 14C-labelling of one precursor was also demonstrated in microsomes from HepG2 cells and from rat lung after warfarin treatment. In HepG2 cells this precursor was identified as the precursor of (clotting) Factor X. This unique 14C-labelling pattern of precursors of vitamin K-dependent proteins in microsomes from different cells and tissues reflects a new mechanism underlying the action of warfarin.  相似文献   

9.
The vitamin K-dependent gamma-carboxylation system is responsible for post-translational modification of vitamin K-dependent proteins, converting them to Gla-containing proteins. The system consists of integral membrane proteins located in the endoplasmic reticulum membrane and includes the gamma-carboxylase and the warfarin-sensitive enzyme vitamin K(1) 2,3-epoxide reductase (VKOR), which provides gamma-carboxylase with reduced vitamin K(1) cofactor. In this work, an in vitro gamma-carboxylation system was designed and used to understand how VKOR and gamma-carboxylase work together as a system and to identify factors that can regulate the activity of the system. Results are presented that demonstrate that the endoplasmic reticulum chaperone protein calumenin is associated with gamma-carboxylase and inhibits its activity. Silencing of the calumenin gene with siRNA resulted in a 5-fold increase in gamma-carboxylase activity. The results provide the first identification of a protein that can regulate the activity of the gamma-carboxylation system. The propeptides of vitamin K-dependent proteins stimulate gamma-carboxylase activity. Here we show that the factor X and prothrombin propeptides do not increase reduced vitamin K(1) cofactor production by VKOR in the system where VKOR is the rate-limiting step for gamma-carboxylation. These findings put calumenin in a central position concerning regulation of gamma-carboxylation of vitamin K-dependent proteins. Reduced vitamin K(1) cofactor transfer between VKOR and gamma-carboxylase is shown to be significantly impaired in the in vitro gamma-carboxylation system prepared from warfarin-resistant rats. Furthermore, the sequence of the 18-kDa subunit 1 of the VKOR enzyme complex was found to be identical in the two rat strains. This finding supports the notion that different forms of genetic warfarin resistance exist.  相似文献   

10.
A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 X 10(-8) to 1 X 10(-6) M. Other vitamin K-dependent proteins including Factor IX and protein S did not inhibit or inhibited only at the highest concentration binding of radiolabeled protein C to the immobilized antibody. Chemical treatment of prothrombin with a variety of agents including denaturation by sodium dodecyl sulfate, reduction with mercaptoethanol followed by carboxymethylation with iodoacetic acid, citraconylation of lysine residues, removal of metal ion with EDTA, or heat decarboxylation did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. Chymotrypsin digestion of prothrombin and isolation on QAE-Sephadex of the peptide representing amino-terminal residues 1-44 of prothrombin further localized the antigenic site recognized by the monoclonal antibody to the highly conserved gamma-carboxyglutamic acid-containing domain. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Antibody H-11 bound specifically to synthetic peptides corresponding to residues 1-12 of Factor VII and 1-22 of protein C. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. The glutamic acid residues in this peptide segment are the first 2 gamma-carboxyglutamic acid residues near the amino-terminal end in the native proteins. Increasing concentrations of Ca2+, Mg2+, or Mn2+ partially inhibited binding of 125I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
All of the vitamin K-dependent plasma proteins with domains that are homologous to the epidermal growth factor (EGF) precursor have 1 hydroxylated aspartic acid residue in the NH2-terminal EGF-homology region. In addition, protein S has 1 hydroxylated asparagine residue in each of the three COOH-terminal EGF-homology regions. All of these proteins have been found to have the amino acid sequence, CX(D or N)XXXX(F or Y)XCXC (corresponding to residues 20 to 33 in EGF), where the Asp or Asn residue is hydroxylated. This sequence also appears in two of the three EGF-homology regions of the human low density lipoprotein receptor and in two of the six EGF-homology regions of bovine thrombomodulin so far identified, suggesting that they may have the modified amino acid. We have now identified beta-hydroxyaspartic acid in acid hydrolysates of both these proteins.  相似文献   

12.
The gamma-carboxyglutamate-containing proteins are a family of secreted vitamin K-dependent proteins in which some glutamyl residues are post-translationally modified to gamma-carboxyglutamic acid residues. A vitamin K-dependent gamma-glutamyl carboxylase enzyme catalyses this post-translational modification. The gamma-carboxylase reaction requires vitamin K in its reduced form, vitamin K hydroquinone, and generates gamma-carboxyglutamate and vitamin K 2,3,-epoxide which is then recycled back to the hydroquinone form by a vitamin K reductase system. Warfarin blocks the vitamin K cycle and hence inhibits the gamma-carboxylase reaction, and this property of Warfarin has led to its wide use in anticoagulant therapy. Until recently, interest in vitamin K-dependent proteins was mostly restricted to the field of hematology. However, the discovery that the anti-coagulant factor protein S and its structural homologue Gas6 (growth arrest-specific gene 6), two vitamin K-dependent proteins, are ligands for the Tyro3/Axl/Mer family of related tyrosine kinase receptors has opened up a new area of research. Moreover, the phenotypes associated with the invalidation of genes encoding vitamin K-dependent proteins or their receptors revealed their implication in regulating phagocytosis during many cell differentiation phenomena such as retinogenesis, neurogenesis, osteogenesis, and spermatogenesis. Additionally, protein S was identified as the major factor responsible for serum-stimulated phagocytosis of apoptotic cells. Therefore, the elucidation of the molecular mechanisms underlying the role of vitamin K-dependent proteins in regulating apoptotic cell phagocytosis may lead to a better understanding of the physiopathology of cell differentiation and could form the framework of new therapeutic strategies aiming at a selective targeting of cell phagocytosis associated pathologies.  相似文献   

13.
Genome analysis of MG virus, a human papovavirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
The single late 26S mRNA of Semliki Forest virus (SFV) directs the synthesis of the four viral structural proteins, C, E3, E2, and E1, and the recently described nonstructural protein, 6K. We report here partial NH2-terminal amino acid sequences of the SFV polypeptides E3 and 6K and of p62, the precursor to E3 and E2. In addition, were have determined a partial NH2-terminal sequence of the Sindbis virus homolog of 6K, the 4.2K protein. p62 and E3 of SFV have identical NH2-terminal amino acid sequences. Comparison of the partial NH2-terminal sequences of 6K of SFV and 4.2K of Sindbis virus with the deduced amino acid sequence encoded by the 26S mRNA of each virus reveals that the genes for these peptides are located in each case between those for E2 and E1. The order of the genes on the 26S mRNA of the alphaviruses is therefore 5'-C-E3-E2-6K-E1-3'. We discuss two mechanisms by which the nascent viral glycoproteins may be inserted into the membrane of the endoplasmic reticulum.  相似文献   

14.
It is known that protein S, a vitamin K-dependent plasma protein, isolated from a human source, gives a closely spaced doublet on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after reduction and that this heterogeneity in molecular size results from a limited proteolysis of protein S mediated by alpha-thrombin in human species. We found here that alpha-thrombin also rapidly converted single-chain bovine protein S to a nicked form, which consisted of the NH2-terminal segment containing gamma-carboxyglutamic acid and the COOH-terminal large segment bridged by a disulfide linkage(s). These two segments were isolated and chemically characterized after S-alkylation of the nicked protein S. The results suggest that the alpha-thrombin-catalyzed hydrolysis of protein S probably occurs at a peptide linkage (Arg-Ser) located in the NH2-terminal portion. The conversion of single-chain protein S to the nicked form was also mediated by plasma kallikrein and plasmin, in addition to alpha-chymotrypsin and trypsin. However, the alpha-thrombin-catalyzed conversion did not occur when calcium ions were added to the reaction mixture.  相似文献   

15.
Conclusive evidence is presented that a recently purified (Stenflo, J. (1976) J. Biol. Chem. 251, 355-363) vitamin K-dependent protein (arbitrarily referred to as Protein C) which is not related to prothrombin, Factors IX or X is also unrelated to Factor VII. It therefore appears to be a new, previously unrecognized vitamin K-dependent protein. In contrast to prothrombin, which binds to negatively charged phospholipid only in the presence of Ca2+ ions, Protein C, like the other vitamin K-dependent proteins, is a precursor of a serine esterase, presumably a protease, but it does not seem to be necessary for blood coagulation. Although the lipid-binding properties of Protein C may suggest that it is associated with membrane structures, its biological function remains unknown.  相似文献   

16.
Blood coagulation factor IX is composed of discrete domains with an NH2-terminal vitamin K-dependent gamma-carboxyglutamic acid (Gla)-containing region, followed by two domains that are homologous with the epidermal growth factor (EGF) precursor and a COOH-terminal serine protease part. Calcium ions bind to the Gla-containing region and to the NH2-terminal EGF-like domain. To be able to determine the structure and function of the Gla- and EGF-like domains, we have devised a method for cleaving factor IX under controlled conditions and isolating the intact domains in high yield, either separately or linked together. The Ca2+ and Mg2+ binding properties of these fragments were examined by monitoring the metal ion-induced changes in intrinsic protein fluorescence. A fragment, consisting of the Gla region linked to the two EGF-like domains, bound Ca2+ in a manner that was indistinguishable from that of the intact molecule, indicating a native conformation. The Ca2+ affinity of the isolated Gla region was lower, suggesting that the EGF-like domains function as a scaffold for the folding of the Gla region. The Gla-independent high affinity metal ion binding site in the NH2-terminal EGF-like domain was shown to bind Ca2+ but not Mg2+. A comparison with similar studies of factor X (Persson, E., Bj?rk, I., and Stenflo, J. (1991) J. Biol. Chem. 266, 2444-2452) suggests that the Ca2(+)-induced fluorescence quenching is due to an altered environment primarily around the tryptophan residue in position 42.  相似文献   

17.
The NH2-terminal amino acid sequence of the 100 kilodalton subunit of porcine gastric H+,K+-ATPase has been determined to be YKAENYELYQVELGPGP. Although the NH2-terminal region of this protein is not similar to the same region of the lamb kidney Na+,K+-ATPase catalytic subunit, other regions of these ATPase proteins appear to be homologous. Both monoclonal and polyclonal antibodies raised to lamb kidney Na+,K+-ATPase and its alpha, but not beta, subunit cross-react with the 100 kilodalton protein of H+,K+-ATPase.  相似文献   

18.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

19.
Factor IX is a vitamin K-dependent zymogen of a serine protease. The NH2-terminal half of the molecule consists of a Ca(2+)-binding gamma-carboxyglutamic acid (Gla)-containing module and two modules homologous to the epidermal growth factor (EGF) precursor. To elucidate the role of these non-catalytic modules of factor IXa beta in factor X activation, we have isolated and characterized fragments of bovine factor IX, containing one or both of the EGF-like modules as well as these modules linked to the Gla module. The fragments were used as inhibitors of factor IXa beta-mediated factor X activation in a plasma clotting system and in systems with purified components of the Xase complex. Fragments consisting of either the two EGF-like modules of factor IX linked together or the NH2-terminal EGF-like module alone were found to inhibit factor Xa generation both in the presence and absence of the cofactor, factor VIIIa. Moreover, a fragment consisting of the corresponding modules of factor X had a similar effect. We therefore propose that factor IXa beta and factor X interact directly through their EGF-like modules on or in the vicinity of a phospholipid surface. We have also found that the isolated Gla module of factor IX inhibits the formation of factor Xa both in the presence and absence of phospholipid but not in the absence of factor VIIIa. Our results are compatible with a model of the Xase complex, in which both the serine protease part and the Gla module of factor IXa beta interact with factor VIIIa.  相似文献   

20.
Beta-hydroxyaspartic acid in vitamin K-dependent proteins   总被引:19,自引:0,他引:19  
A method for the quantitation of beta-hydroxyaspartic acid in proteins is described. After hydrolysis in 6 M HCl, the beta-hydroxyaspartic acid released is quantitated on an automatic amino acid analyzer employing a pH 2.0 eluting buffer and postcolumn reaction with o-phthalaldehyde for detection. The sensitivity is about 0.01 nmol. Among vitamin K-dependent proteins, factor IX, factor X, protein C, and protein Z each contain about one residue of beta-hydroxyaspartic acid whereas protein S contains two or three residues. Prothrombin lacks beta-hydroxyaspartic acid as do a number of non-vitamin K-dependent proteins also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号