首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stress induced the serious disorder of cardiac function and cardiovascular diseases. Apoptosis is the cellular basis in stress induced cardiac injury. In our previous study we found that many stressors resulted in mitochondrial damage. It is certain that mitochondria is important mediator in triggering apoptotic cell death, but the mechanism, by which the stress induced mitochondrial injury leads to cardiomyocyte apoptosis, remains unclear. We designed the present study to investigate the changes of the mitochondria in cardiomyocytes undergoing stress and its role in inducing apoptosis. Here we reported that stress changed the membrane fluidity of mitochondria and induced the lipid peroxidation of mitochondrial membrane in  相似文献   

3.
Mitochondrial dysfunctions associated with amyloid-β peptide (Aβ) accumulation in mitochondria have been observed in Alzheimer's disease (AD) patients' brains and in AD mice models. Aβ is produced by sequential action of β- and γ-secretases cleaving the amyloid precursor protein (APP). The γ-secretase complex was found in mitochondria-associated endoplasmic reticulum membranes (MAM) suggesting that this could be a potential site of Aβ production, from which Aβ is further transported into the mitochondria. In vitro, Aβ was shown to be imported into the mitochondria through the translocase of the outer membrane (TOM) complex. The mitochondrial presequence protease (PreP) is responsible for Aβ degradation reducing toxic effects of Aβ on mitochondrial functions. The proteolytic activity of PreP is, however, lower in AD brain temporal lobe mitochondria and in AD transgenic mice models, possibly due to an increased reactive oxygen species (ROS) production. Here, we review the intracellular mechanisms of Aβ production, its mitochondrial import and the intra-mitochondrial degradation. We also discuss the implications of a reduced efficiency of mitochondrial Aβ clearance for AD. Understanding the underlying mechanisms may provide new insights into mitochondria related pathogenesis of AD and development of drug therapy against AD. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

4.
5.
Inactivation of the pyruvate dehydrogenase complex catalyzed by pyruvate dehydrogenase kinase was studied using intact mitochondria purified from green leaf tissue of pea (Pisum sativum L.) and dialyzed mitochondrial extracts. Thiamine pyrophosphate was inhibitory in dialyzed extracts but not in intact mitochondria, except in the presence of high concentrations of Na+. NH4+, at concentrations as low as 20 micromolar, markedly stimulated inactivation in dialyzed extracts. K+ in the range 1 to 10 millimolar also enhanced inactivation. In contrast, Na+ was without affect at lower concentrations but was inhibitory at 10 to 100 millimolar levels. The effect of NH4+ is discussed in relation to a possible regulatory interaction between photorespiratory NH4+ production and the entry of carbon into the tricarboxylic acid cycle by way of the pyruvate dehydrogenase complex.  相似文献   

6.
Mitochondria play a central role not only in energy generation but also for apoptosis. A key step in mitochondrial apoptosis is the release of mitochondrial proteins, most importantly cytochrome c. This release is orchestrated by the pro- and anti-apoptotic members of the Bcl-2 protein family. The functions of these Bcl-2 family members are clear in terms of order and of principle: the pro-apoptotic BH3-only protein group contains the triggers, which cause the activation of the effectors Bax and Bak, while the anti-apoptotic Bcl-2-like proteins prevent this activation. However, the molecular details are still insufficiently clear and the proposed models have certain gaps and are partly contradictory. We have recently presented evidence that targeting to mitochondria of at least one BH3-only protein is essential for its pro-apoptotic functions. Here we discuss how this mechanism might fit into and expand existing models and speculate about the potential implications of this finding.  相似文献   

7.
8.
Oxidative stress causes selective oxidation of cardiolipin (CL), a fourtail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mito-chondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.  相似文献   

9.
Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson''s disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death.  相似文献   

10.
Abstract

Malignant mesothelioma (MM) is a fatal neoplastic disease with no therapeutic option. Therefore, the search for novel therapies is of paramount importance.

Methods

Since mitochondrial targeting of α-tocopheryl succinate (α-TOS) by its tagging with triphenylphosphonium enhances its cytotoxic effects to cancer cells, we tested its effect on MM cells and experimental mesotheliomas.

Results

Mitochondrially targeted vitamin E succinate (MitoVES) was more efficient in killing MM cells than α-TOS with IC50 lower by up to two orders of magnitude. Mitochondrial association of MitoVES in MM cells was documented using its fluorescently tagged analogue. MitoVES caused apoptosis in MM cells by mitochondrial destabilization, resulting in the loss of mitochondrial membrane potential, generation of reactive oxygen species, and destabilization of respiratory supercomplexes. The role of the mitochondrial complex II in the activity of MitoVES was confirmed by the finding that MM cells with suppressed succinate quinone reductase were resistant to MitoVES. MitoVES suppressed mesothelioma growth in nude mice with high efficacy.

Discussion

MitoVES is more efficient in killing MM cells and suppressing experimental mesotheliomas compared with the non-targeted α-TOS, giving it a potential clinical benefit.  相似文献   

11.
Oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the ageing process. Mitochondria are known to be a rich source for the production of free radicals and, consequently, mitochondrial components are susceptible to lipid peroxidation (LPO) that decreases respiratory activity. In the present investigation, we have evaluated mitochondrial LPO, 8-oxo-dG, oxidized glutathione, reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and electron transport chain (ETC) complex activities in the brain of young versus aged rats. In aged rats, the contents of LPO, oxidized glutathione and 8-oxo-dG were high whereas reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities were found to be low. Lipoic acid administration to aged rats reduced the levels of mitochondrial LPO, 8-oxo-dG and oxidized glutathione and enhanced reduced glutathione, ATP, lipoic acid and ETC complex activities. In young rats lipoic acid administration showed only minimal lowering the levels of LPO, 8-oxo-dG and oxidized glutathione and slight increase in the levels of reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities. These findings suggest that the dithiol, lipoic acid, provides protection against age-related oxidative damage in the mitochondria of aged rats.  相似文献   

12.
13.
14.
Variation of Mongoloid-specific restriction sites of mitochondrial genome was analyzed in three territorial groups of Tuvinians. Distribution of mitochondrial DNA haplogroups A, B, C, and D on the territory of the Tuva Republic was estimated. The populations studied did not display distinct differentiation in respect to the mtDNA polymorphism. The specific feature of Tuvinian mitochondrial gene pool was the prevalence of only one haplogroup C (over 40%), mainly represented by two mitotypes. The high frequency of this haplogroup makes Tuvinians similar to more northern Siberian populations. On the other hand, the presence of haplogroup B indicates that Tuvinians have affinity to ethnic groups of Central Asia.  相似文献   

15.
16.
The mtDNA polymorphism was analyzed in eight ethnic groups (N = 979) of the Volga–Ural region. Most mtDNA variants belonged to haplogroups H, U, T, J, W, I, R, and N1 characteristic of West Eurasian populations. The most frequent were haplogroups H (12–42%) and U (18–44%). East Eurasian mtDNA types (A, B, Y, F, M, N9) were also observed. Genetic diversity was higher in Turkic than in Finno-Ugric populations. The frequency of mtDNA types characteristic of Siberian and Central Asian populations substantially increased in the ethnic groups living closer to the Urals, a boundary between Europe and Asia. Geographic distances, rather than linguistic barriers, were assumed to play the major role in distribution of mtDNA types in the Volga–Ural region. Thus, as concerns the maternal lineage, the Finno-Ugric populations of the region proved to be more similar to their Turkic neighbors rather than to linguistically related Balto-Finnish ethnic groups.  相似文献   

17.
Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aβ-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aβ-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aβ-mediated mitochondrial fragmentation and dysfunction in AD.  相似文献   

18.
We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them “mitochondrial nutrients”. The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis–Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take α-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-l-carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.  相似文献   

19.
Russian Journal of Genetics - The present article reviews the rapidly growing body of research on the role of mitochondrial DNA (mtDNA) in the realization of individual risk of Parkinson’s...  相似文献   

20.
The importance of mitochondrial DNA (mtDNA) deletions in the progeroid phenotype of exonuclease-deficient DNA polymerase γ mice has been intensely debated. We show that disruption of Mip1 exonuclease activity increases mtDNA deletions 160-fold, whereas disease-associated polymerase variants were mostly unaffected, suggesting that exonuclease activity is vital to avoid deletions during mtDNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号