首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Glutathione, both reduced (GSH) and oxidized (GSSG), was effective in displacing binding of l -[3H]-glutamic acid (l -[3H]Glu) and dl -(E)-2-[3H]amino-4-propyl-5-phosphono-3-pentenoic acid ([3H]CGP-39653) in rat brain synaptic membranes, with less potent displacement of binding of dl -α-amino-3-hydroxy-5-[3H]-methylisoxazole-4-propionic and [3H]kainic acids. Liquid chromatographic analysis revealed that both GSH and GSSG were contaminated with l -Glu by <1%. Both GSH and GSSG potentiated (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding in a manner similar to that found with l -Glu. Pre-treatment with glutamate dehydrogenase (GDH) induced a marked rightward shift of the concentration-response curve for l -Glu in the presence of NAD without affecting that in its absence, whereas GDH was ineffective in affecting the potentiation by both GSH and GSSG even in the presence of NAD. In the presence of GSH at a maximally effective concentration, both glycine (Gly) and spermidine potentiated [3H]MK-801 binding to a somewhat smaller extent than that found in the presence of l -Glu at a maximally effective concentration. The potentiation of [3H]MK-801 binding by GSH was invariably attenuated by addition of CGP-39653, d -2-amino-5-phosphonovaleric acid (d -AP5), and 5,7-dichlorokynurenic acid (DCKA), whereas GSH was effective in diminishing potencies of CGP-39653, d -AP5, DCKA, and 6,7-dichloroquinoxaline-2,3-dione to inhibit [3H]MK-801 binding when determined in the presence of both l -Glu and Gly. These results suggest that glutathione may be an endogenous agonist selective for the N-methyl-d -aspartate (NMDA) recognition domain on the NMDA receptor ionophore complex.  相似文献   

2.
Abstract— Pretreatment with sulfhydryl-reactive agents, such as N-ethylmaleimide and p-chloromercuriphenylsul-fonic acid, invariably resulted in marked inhibition of the binding of dl -(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acid ([3H]CGP 39653), a competitive antagonist at an N-methyl-d -aspartate (NMDA)-sensitive subclass of central excitatory amino acid receptors, in brain synaptic membranes extensively washed and treated with Triton X-100, but did not significantly affect the binding of L-[3H]-glutamic acid ([3H]Glu), an endogenous agonist. The pre-treatment was effective in reducing the binding of [3H]-CGP 39653 at equilibrium, without altering the initial association rate, and decreased the affinity for the ligand. Pretreatment with sulfhydryl-reactive agents also enhanced the potencies of NMDA agonists to displace [3H]-CGP 39653 binding and attenuated those of NMDA antagonists, but had little effect on the potencies of the agonists and antagonists to displace [3H]Glu binding. The binding of both [3H]CGP 39653 and [3H]Glu was similarly sensitive to pretreatment with four different proteases in Tritontreated membranes, whereas pretreatment with phospho-lipase A2 or C markedly inhibited [3H]CGP 39653 binding without altering [3H]Glu binding. Moreover, both phospho-lipases not only induced enhancement of the abilities of NMDA agonists to displace the binding of [3H]CGP 39653 and [3H]Glu, but also caused diminution of those of NMDA antagonists. These results suggest that both sulfhydryl-reactive agents and phospholipases may predominantly interfere with radiolabeling of the NMDA recognition domain in a state favorable to an antagonist by [3H]CGP 39653, with concomitant facilitation of that in an agonist-preferring form by [3H]Glu. The possible presence of multiple forms of the NMDA recognition domain is further supported by these data.  相似文献   

3.
Abstract: Pretreatment with Triton X-100 more than doubled the binding of radiolabeled 5,7-dichlorokynurenic acid (DCKA), a proposed antagonist at a glycine (Gly) recognition domain on the N-methyl-d -aspartate (NMDA) receptor ionophore complex, in rat brain synaptic membranes. The binding exhibited an inverse temperature dependency, reversibility, and saturability, the binding sites consisting of a single component with a high affinity (27.5 nM) and a relatively low density (2.87 pmol/mg of protein). The binding of both [3H]DCKA and [3H]Gly was similarly displaced by numerous putative agonists and antagonists at the Gly domain in a concentration-dependent manner at a concentration range of 100 nM to 0.1 mM. Among the 24 putative ligands tested, DCKA was the second most potent displacer of the binding of both radioligands with no intrinsic affinity for the binding of [3H]kainic acid and α-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid (AMPA) to the non-NMDA receptors. In contrast, the other proposed potent Gly antagonist, 5,7-dinitroquinoxaline-2,3-dione, was active in displacing the binding of [3H]glutamic ([3H]Glu) and D,L-(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acids to the NMDA recognition domain with a relatively high affinity for the non-NMDA receptors. In addition, the proposed antagonist at the AMPA-sensitive receptor, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline, not only displaced weakly the binding of both [3H]- Gly and [3H]DCKA, but also inhibited the binding of (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the NMDA-sensitive receptor in the presence of added Glu alone in a manner sensitive to antagonism by further added Gly. Clear correlations were seen between potencies of the displacers to displace [3H]DCKA binding and [3H]Gly binding, in addition to between the potencies to displace [3H]-DCKA or [3H]Gly binding and to potentiate or inhibit [3H]MK-801 binding. All quinoxalines tested were invariably more potent displacers of [3H]DCKA binding than [3H]Gly binding, whereas kynurenines were similarly effective in displacing the binding of both [3H]Gly and [3H]-DCKA. These results undoubtedly give support to the proposal that [3H]DCKA is one useful radioligand available in terms of its high selectivity and affinity for the Gly domain in the brain. Possible multiplicity of the Gly domain is suggested by the differential pharmacological profiles between the binding of [3H]Gly and [3H]DCKA.  相似文献   

4.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3H] 5, 7-dichlorokynurenic acid ([3H]- DCKA) but not of the agonist ligand [3H] glycine ([3H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3H] DCKA binding with [3H] Gly binding being unaltered. Moreover, the densities of [3H] DCKA binding were not significantly different from those of [3H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3H] Gly binding than of [3H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain.  相似文献   

7.
Bmax values of the specific binding of [3H]-WB 4101, [3H]-dihydroalprenolol, [3H]-spiperone and [3H]-imipramine to various rat brain regions were determined at 4 hr intervals over 24 hr under circadian conditions. No significant circadian rhythm of binding sites number was found for any receptor investigated in cerebral cortex, hypothalamus or brain stem. Some methodological issues are discussed.  相似文献   

8.
Abstract: High-affinity binding sites (apparent K D= 1.5 nM) for [3H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3H]serotonin uptake or [3H]imipramine binding. These results suggest that the high-affinity binding of [3HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3H]desipramine and the uptake site for norepinephrine.  相似文献   

9.
We have identified a monoclonal antibody, B6B21, that significantly elevates long-term potentiation when applied to CA1 pyramidal cell apical dendrites in rat hippocampal slices and characterized its binding to N-methyl-D-aspartate-receptor complexes using extensively washed hippocampal membranes. Five micrograms of affinity-purified B6B21 per 100 micrograms of membranes gave a two- to threefold elevation in N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) binding. When [3H]TCP binding was stimulated by the combined addition of maximal concentrations of glutamate, glycine, and magnesium, B6B21 no longer stimulated [3H]TCP binding. Like glycine, B6B21 enhanced the effect of N-methyl-D-aspartate and glutamate in stimulating [3H]TCP binding. Moreover, B6B21 reversed 7-chlorokynurenic acid inhibition of [3H]TCP binding, but it had no effect on the inhibition of [3H]TCP binding by D-(-)-2-amino-5-phosphonovaleric acid. B6B21 increased the rate of association and dissociation of [3H]TCP, but had no effect on equilibrium binding. Glutamate, but not glycine, however, increased B6B21-enhancement of [3H]TCP association and dissociation. B6B21 binding at strychnine-insensitive glycine sites was confirmed by direct measurement of [3H]glycine binding. These results suggest that B6B21 binds directly to N-methyl-D-aspartate receptors and displays properties similar to glycine.  相似文献   

10.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

11.
Insulin Is Released from Rat Brain Neuronal Cells in Culture   总被引:4,自引:4,他引:0  
Depolarization of neuronal cells in primary culture from the rat brain by potassium ions in the presence of calcium or by veratridine caused a greater than three-fold stimulation of release of immunoreactive insulin. HPLC of the released insulin immunoreactivity from the neuronal cultures comigrated with the two rat insulins. The depolarization-induced release of insulin was inhibited by cycloheximide and was specific for neuronal cultures since potassium ions failed to cause the release in comparably prepared astrocytic glial cells from the rat brain. Prelabelling of neuronal cultures with [3H]leucine followed by depolarization resulted in the release of radioactivity that immunoprecipitated with insulin antibody. The release of [3H]insulin was biphasic. These observations suggest that neuronal cells from the brain have the capacity to synthesize insulin that could be released under depolarization conditions.  相似文献   

12.
Abstract: [3H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected.  相似文献   

13.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

14.
Abstract: [3H] γ -Aminobutyric acid ([3H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3H]GABA uptake into synaptosomes isolated from rat whole brains. [3H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end.  相似文献   

15.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

16.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

17.
Abstract: The binding of [3H]spiperone, a neuroleptic/dopamine receptor ligand, to membranes of the ventral tegmental area of the rat was studied in vitro and found to be rapid, saturable, reversible, and of high affinity. Specific binding was displaced by the dopaminergic agonists dopamine, apomorphine, and 2-amino-6,7-dihydroxytetralin, and stereospecifically by the neuroleptic drugs butaclamol and flupenthixol. Bromocryptine and other ergots displaced the binding, as did the D-2 antagonists domperidone, molindone, metoclopramide, and sulpiride. Noradrenergic, histaminergic, and serotonergic components of the binding were not detected in displacement studies with various agonists and antagonists. These data are consistent with the hypothesis that [3H]spiperone labels dopamine receptors in the ventral tegmental area that are not linked to adenylate cyclase and are therefore likely to be of the D-2 type.  相似文献   

18.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

19.
The effects of different variables such as incubation time, temperature, tissue protein content, and pH on the interactions of various labelled nicotinic ligands with nicotine-like binding sites in vitro were studied in rodent brain preparations. The ligands tested were alpha-[3H]bungarotoxin (alpha-[3H]BTX), [3H]tubocurarine ([3H]TC), and [3H]nicotine ([3H]NIC). The regional distribution of the labelled nicotinic ligand binding was also studied and affinity constants and maximal binding (Bmax) values for the equilibrium [3H]NIC binding are given. Association kinetics for [3H]NIC and [3H]TC binding to brain homogenate were similar, with maximal binding within 5-10 min of incubation, followed by a continuous decrease. In contrast, the binding of alpha-[3H]BTX to brain homogenate was much slower, reaching equilibrium after 30-60 min of incubation. Scatchard analysis of equilibrium binding data for [3H]NIC in the hippocampus indicated two binding sites: a high-affinity site (Bmax, 60 pmol/g protein; KD, 6 nM) and a low-affinity site (Bmax, 230 pmol/g protein; KD, 125 nM). The data for the high-affinity [3H]NIC binding site are very similar to previously found data for the high-affinity binding site of [3H]TC and the binding site of alpha-[3H]BTX. Each ligand showed regional differences in binding, and the binding pattern also differed between the ligands.  相似文献   

20.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号