首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intermediate filament nestin is expressed in neural stem cells, neuroectodermal tumors and various adult tissues. In the gastrointestinal (GI) tract, nestin has been reported in glial cells. Recently, nestin has been reported in interstitial cells of Cajal (ICC) and in gastrointestinal stromal tumors, thought to derive from ICC. Here we investigated nestin immunoreactivity (-ir) in the normal human GI tract, with emphasis on Kit-ir ICC. Two different antibodies specific for human nestin and multicolor high-resolution confocal microscopy were used on material from our human GI tissue collection. The staining pattern of both nestin antibodies was similar. In labeled cells, nestin-ir appeared filamentous. Most intramuscular ICC in antrum and all myenteric ICC (ICC-MP) in small intestine were nestin-ir, while nestin-ir was not detected in deep muscular plexus ICC. In the colon, some - but not all - ICC-MP and most ICC in the circular musculature were nestin-ir while nestin-ir was not detected in ICC in the longitudinal musculature and in the submuscular plexus. In addition, many Kit-negative cells were nestin-ir in all regions. Neurons and smooth muscle cells were consistently nestin negative, while most S100-ir glial cells were nestin-ir. In addition, nestin-ir was also present in some CD34-ir fibroblast-like cells, in endothelium and in other cell types in the mucosa and serosa. In conclusion, nestin-ir is abundantly present in the normal human GI tract. Among a number of cell types, several, but not all, subpopulations of Kit-ir ICC were nestin-ir. The functional significance of nestin in the GI tract remains obscure.  相似文献   

2.
Interstitial cells of Cajal (ICC) are the pacemaker cells in gastrointestinal (GI) muscles. They also mediate or transduce inputs from enteric motor nerves to the smooth muscle syncytium. What is known about functional roles of ICC comes from developmental studies based on the discovery that ICC express c-kit. Functional development of ICC networks depends on signaling via the Kit receptor pathway. Immunohistochemical studies using Kit antibodies have expanded our knowledge about the ICC phenotype, the structure of ICC networks, the interactions of ICC with other cells within the tunica muscularis, and the loss of ICC in some motility disorders. Manipulating Kit signaling with reagents to block the receptor or downstream signaling pathways or by using mutant mice in which Kit or its ligand, stem cell factor, are defective has allowed novel studies of the development of these cells within the tunica muscularis and also allowed the study of specific functions of different classes of ICC in several regions of the GI tract. This article examines the role of ICC in GI motility, focusing on the functional development and maintenance of ICC networks in the GI tract and the phenotypic changes that can occur when the Kit signaling pathway is disrupted.  相似文献   

3.
Ageing is associated with impaired neuromuscular function of the terminal gastrointestinal (GI) tract, which can result in chronic constipation, faecal impaction and incontinence. Interstitial cells of cajal (ICC) play an important role in regulation of intestinal smooth muscle contraction. However, changes in ICC volume with age in the terminal GI tract (the anal canal including the anal sphincter region and rectum) have not been studied. Here, the distribution, morphology and network volume of ICC in the terminal GI tract of 3‐ to 4‐month‐old and 26‐ to 28‐month‐old C57BL/6 mice were investigated. ICC were identified by immunofluorescence labelling of wholemount preparations with an antibody against c‐Kit. ICC network volume was measured by software‐based 3D volume rendering of confocal Z stacks. A significant reduction in ICC network volume per unit volume of muscle was measured in aged animals. No age‐associated change in ICC morphology was detected. The thickness of the circular muscle layer of the anal sphincter region and rectum increased with age, while that in the distal colon decreased. These results suggest that ageing is associated with a reduction in the network volume of ICC in the terminal GI tract, which may influence the normal function of these regions.  相似文献   

4.
Morphological studies have shown synaptic-like structures between enteric nerve terminals and interstitial cells of Cajal (ICC) in mouse and guinea pig gastrointestinal tracts. Functional studies of mice lacking certain classes of ICC have also suggested that ICC mediate enteric motor neurotransmission. We have performed morphological experiments to determine the relationship between enteric nerves and ICC in the canine gastric antrum with the hypothesis that conservation of morphological features may indicate similar functional roles for ICC in mice and thicker-walled gastrointestinal organs of larger mammals. Four classes of ICC were identified based on anatomical location within the tunica muscularis. ICC in the myenteric plexus region (IC-MY) formed a network of cells that were interconnected to each other and to smooth muscle cells by gap junctions. Intramuscular interstitial cells (IC-IM) were found in muscle bundles of the circular and longitudinal layers. ICC were located along septa (IC-SEP) that separated the circular muscle into bundles and were also located along the submucosal surface of the circular muscle layer (IC-SM). Immunohistochemistry revealed close physical associations between excitatory and inhibitory nerve fibers and ICC. These contacts were synaptic-like with pre- and postjunctional electron-dense regions. Synaptic-like contacts between enteric neurons and smooth muscle cells were never observed. Innervated ICC formed gap junctions with neighboring smooth muscle cells. These data show that ICC in the canine stomach are innervated by enteric neurons and express similar structural features to innervated ICC in the murine GI tract. This morphology implies similar functional roles for ICC in this species.  相似文献   

5.
6.
Kit immunohistochemistry and confocal reconstructions have provided detailed 3-dimensional images of ICC networks throughout the gastrointestinal (GI) tract. Morphological criteria have been used to establish that different classes of ICC exist within the GI tract and physiological studies have shown that these classes have distinct physiological roles in GI motility. Structural studies have focused predominately on rodent models and less information is available on whether similar classes of ICC exist within the GI tracts of humans or non-human primates. Using Kit immunohistochemistry and confocal imaging, we examined the 3-dimensional structure of ICC throughout the GI tract of cynomolgus monkeys. Whole or flat mounts and cryostat sections were used to examine ICC networks in the lower esophageal sphincter (LES), stomach, small intestine and colon. Anti-histamine antibodies were used to distinguish ICC from mast cells in the lamina propria. Kit labeling identified complex networks of ICC populations throughout the non-human primate GI tract that have structural characteristics similar to that described for ICC populations in rodent models. ICC-MY formed anastomosing networks in the myenteric plexus region. ICC-IM were interposed between smooth muscle cells in the stomach and colon and were concentrated within the deep muscular plexus (ICC-DMP) of the intestine. ICC-SEP were found in septal regions of the antrum that separated circular muscle bundles. Spindle-shaped histamine+ mast cells were found in the lamina propria throughout the GI tract. Since similar sub-populations of ICC exist within the GI tract of primates and rodents and the use of rodents to study the functional roles of different classes of ICC is warranted.  相似文献   

7.
The feline gastrointestinal (GI) tract is an important model for GI physiology but no immunohistochemical assessment of interstitial cells of Cajal (ICC) has been performed because of the lack of suitable antibodies. The aim of the present study was to investigate the various types of ICC and associated nerve structures in the pyloric sphincter region, by using immunohistochemistry and electron microscopy to complement functional studies. In the sphincter, ICC associated with Auerbach’s plexus (ICC-AP) were markedly decreased within a region of 6–8 mm in length, thereby forming an interruption in this network of ICC-AP, which is otherwise continuous from corpus to distal ileum. In contrast, intramuscular ICC (ICC-IM) were abundant within the pylorus, especially at the inner edge of the circular muscle adjacent to the submucosa. Similar distribution patterns of nerves positive for vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS) and substance P (SP) were encountered. Quantification showed a significantly higher number of ICC-IM and the various types of nerves in the pylorus compared with the circular muscle layers in the adjacent antrum and duodenum. Electron-microscopic studies demonstrated that ICC-IM were closely associated with enteric nerves through synapse-like junctions and with smooth muscle cells through gap junctions. Thus, for the first time, immunohistochemical studies have been successful in documenting the unique distribution of ICC in the feline pylorus. A lack of ICC-AP guarantees the distinct properties of antral and duodenal pacemaker activities. ICC-IM are associated with enteric nerves, which are concentrated in the inner portion of the circular muscle layer, being part of a unique innervation pattern of the sphincter. This study was supported by operating grants from the Canadian Institutes of Health Research (to J.D.H. and N.E.D.) and from the Canadian Association of Gastroenterology (to L.W.C.L.).  相似文献   

8.
9.
The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage. We describe the presence of cells in the muscularis of the zebrafish intestine; these cells have similar features to ICCs in other vertebrates. The ICC-like cells are associated with the muscularis, are more electron-dense than surrounding smooth muscle cells, possess long cytoplasmic processes and mitochondria, and are situated opposing enteric nervous structures. In addition, immunofluorescent and immunoelectron-microscopic studies with antibodies targeting the zebrafish ortholog of a putative ICC marker, c-KIT (kita), showed c-kit immunoreactivity in zebrafish ICCs. Taken together, these data represent the first ultra-structural characterization of cells in the muscularis of the zebrafish Danio rerio and suggest that ICC differentiation in vertebrate evolution dates back to the teleost lineage.  相似文献   

10.
11.
Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: 1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; 2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; 3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and 4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.  相似文献   

12.
13.
Interstitial cells of Cajal in pancreas   总被引:4,自引:0,他引:4  
We show here (presumably for the first time) a special type of cell in the human and rat exocrine pancreas. These cells have phenotypic characteristics of the enteric interstitial cells of Cajal (ICC). To identify pancreatic interstitial cells of Cajal (pICC) we used routine light microscopy, non-conventional light microscopy (less than 1 mum semi-thin sections of Epon-embedded specimens cut by ultramicrotomy and stained with Toluidine blue), transmission electron microscopy (TEM), and immunocytochemistry. The results showed that pICC can be recognized easily by light microscopy, particularly on semi-thin sections, as well as by TEM. Two-dimensional reconstructions from serial photos suggest a network-like spatial distribution of pICC. pICC represent 3.3+/-0.5% of all pancreatic cells, and seem to establish close spatial relationships with: capillaries (43%), acini (40%), stellate cells (14%), nerve fibres (3%). Most of pICC (88%) have 2 or 3 long processes (tens of mum) emerging from the cell body. TEM data show that pICC meet the criteria for positive diagnosis as ICC (e.g. numerous mitochondria, 8.7+/-0.8% of cytoplasm). Immunocytochemistry revealed that pICC are CD117/c-kit and CD34 positive. We found pICC positive (40-50%) for smooth muscle alpha-actin or S-100, and, occasionally, for CD68, NK1 neurokinin receptor and vimentin. The reactions for desmin and chromogranin A were negative in pICC. At present, only hypotheses and speculations can be formulated on the possible role of the pICC (e.g., juxtacrine and/or paracrine roles). In conclusion, the quite-established dogma: "ICC only in cavitary organs" is overpassed.  相似文献   

14.
15.
In the tunica muscularis of the gastrointestinal (GI) tract, gap junctions form low-resistance pathways between pacemaker cells known as interstitial cells of Cajal (ICCs) and between ICC and smooth muscle cells. Coupling via these junctions facilitates electrical slow-wave propagation and responses of smooth muscle to enteric motor nerves. Glycyrrhetinic acid (GA) has been shown to uncouple gap junctions, but previous studies have shown apparent nonspecific effects of GA in a variety of tissues. We tested the effects of GA using isometric force measurements, intracellular microelectrode recordings, the patch-clamp technique, and the spread of Lucifer yellow within cultured ICC networks. In murine small intestinal muscles, beta-GA (10 muM) decreased phasic contractions and depolarized resting membrane potential. Preincubation of GA inhibited the spread of Lucifer yellow, increased input resistance, and decreased cell capacitance in ICC networks, suggesting that GA uncoupled ICCs. In patch-clamp experiments of isolated jejunal myocytes, GA significantly decreased L-type Ca(2+) current in a dose-dependent manner without affecting the voltage dependence of this current. The IC(50) for Ca(2+) currents was 1.9 muM, which is lower than the concentrations used to block gap junctions. GA also significantly increased large-conductance Ca(2+)-activated K(+) currents but decreased net delayed rectifier K(+) currents, including 4-aminopyridine and tetraethylammonium-resistant currents. In conclusion, the reduction of phasic contractile activity of GI muscles by GA is likely a consequence of its inhibitory effects on gap junctions and voltage-dependent Ca(2+) currents. Membrane depolarization may be a consequence of uncoupling effects of GA on gap junctions between ICCs and smooth muscles and inhibition of K(+) conductances in smooth muscle cells.  相似文献   

16.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   

17.
The motility of the gastrointestinal tract is generated by smooth muscle cells and is controlled to a large extent by an intrinsic neural network. A gap of approximately 200 nm usually separates nerve varicosities from smooth muscle cells, which suggests that direct innervation of the smooth muscle by synapses does not occur. Enteric nerves do make synapse-like contact with proposed regulatory cells, the interstitial cells of Cajal (ICC), which in turn may be in gap junction contact with smooth muscle cells. The role played by ICC in enteric innervation is controversial. Experimental evidence has been presented in vitro for the hypothesis that nitrergic inhibitory innervation is strongly reduced in the absence of ICC. However, in vivo data appear to dispute that. The present report provides evidence that explains the discrepancy between in vivo and in vitro data and provides evidence that inhibitory neurotransmitters can reach smooth muscle cells without hindrance when ICC are absent. The fundic musculature shows increased responses to substance P-mediated innervation and shows marked spontaneous activity, which is consistent with increased muscle excitability.  相似文献   

18.
19.
20.
The gastrointestinal tracts of four Chelonia mydas hatchlings were examined at the anatomical, histological and ultrastructural level. Our results show that the gastrointestinal tract(GI) is composed by esophagus, stomach, small intestine(SI) and large intestine(LI), and histologically of mucosa, submucosa, muscularis externa(ME) and serosa. The esophagus is marked by conical papillae lined by keratinized stratified squamous epithelium, whereas the remaining GI by simple columnar epithelium; esophageal diverticulum is absent. The stomach covered with mucous granule cells, contains cardia, fundic regions and pylorus, which are separately characterized by cardiac glands, fundic glands and pyloric glands, and have the thickest submucosa and ME of the GI. The ME of the esophagus mainly consist of one layer of circular smooth muscle whereas the rest of GI of two layers, inner circular muscle and outer longitudinal muscle. The SI is slightly longer than the LI and the GI is approximately 5.11 times of the carapace length. The SI is lined with longitudinal zigzag folds and characterized by absorptive cells with longer and denser microvilli, whereas the LI by transversal folds, goblet cells and lymphoid nodules. Only intestinal glands appear in duodenum. Endocrine cells are observed in all sections of the GI and accounted for the largest proportion in duodenum. The results demonstrate a perfect combination of the structure and function of the GI and reveal that the digestion and absorption primarily occurs in the foregut. C. mydas hatchling may prefer carnivorous diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号