首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A general method for the selective isolation of free and blocked amino-terminal peptides from proteins is described. The rationale behind the methodology is based on the reasoning that if a protein, which has all its free amino groups blocked by citraconylation, is digested with a protease, all peptides, except those derived from the amino terminus, will have a free amino group. Reaction of such a digest with 1-fluoro-2,4-dinitrobenzene (Dnp-F) followed by removal of citraconyl groups by acid treatment and removal of dinitrophenyl (Dnp) groups from histidine and tyrosine side chains by thiolysis will result in dinitrophenylation of all alpha-amino groups of peptides generated from internal cleavages, leaving only peptides derived from the amino terminus without a Dnp group. The strong adsorption of Dnp groups to polystyrene is used to selectively elute the underivatized amino-terminal peptides from such a column. It is also demonstrated how selective isolation of amino-terminal peptides can be used to determine whether a protein has a free or blocked amino terminus.  相似文献   

2.
A glutamic acid residue at the active site of bovine lung angiotensin I-converting enzyme, a zinc-metallo peptidyl dipeptidase, was esterified with p-[N,N-bis(chloroethyl)amino]phenylbutyryl-L-[U-14C]proline (chlorambucyl-L-[U-14C]-L-proline), an affinity label for this enzyme (Harris, R.B., and Wilson, I.B. (1983) J. Biol. Chem. 258, 1357-1362). The radiolabeled enzyme was digested with BrCN and only 1 of the 30 cleavage peptides resolved by reverse-phase high performance liquid chromatography (HPLC) contained the bound radiolabel. This active-site peptide (Mr = 16,000) was digested with trypsin and the labeled peptide formed (T-2) was further degraded with thermolysin. The thermolytic peptides were resolved by reverse-phase HPLC. Only 1 of the 5 peptides obtained (Th-1, Mr = 1290) contained the bound radiolabel. Th-1 (12 residues) was subjected to manual Edman degradation and the following partial sequence was determined: H2N-Phe-Thr-Glu-Leu-Ala-Asp-Ser-Glu... The radiolabel was released at cycle 3 and the amount recovered was equivalent to the amount of phenylthiohydantoin-Glu detected on HPLC. Thus, glutamic acid is esterified with chlorambucyl-L-[U-14C]proline in confirmation of our earlier findings. The sequence determined is homologous in 5 residues with the corresponding sequences of bovine carboxypeptidase A and B, two other mammalian zinc proteases. There is little sequence homology with thermolysin, a bacterial zinc protease that also contains an essential active-site glutamic acid residue.  相似文献   

3.
Y N Chen  J F Riordan 《Biochemistry》1990,29(46):10493-10498
Inactivation of rabbit lung angiotensin converting enzyme (ACE) by 1-fluoro-2,4-dinitrobenzene (Dnp-F) has been shown to be due primarily to the modification of a tyrosine residue [Bünning, P., Kleeman, S.G., & Riordan, J.F. (1990) Biochemistry (preceding paper in this issue)]. Rabbit testicular ACE is also inactivated by Dnp-F. The specific site of modification has been identified by peptide mapping of tryptic digests of the Dnp-modified protein. Two principal 340-nm-absorbing peaks, not observed with protein modified in the presence of inhibitor, have been characterized. Amino acid and sequence analyses show that these peptides contain two distinct residues that have been selectively modified. The sequence of the major (greater than 90% of the total) modified peptide is YVEFTNK with the Dnp group on tyrosine. The sequence of the second, minor peptide is KVQDLQR with the Dnp group on lysine. Identical peptides were obtained from Dnp-modified rabbit lung ACE. These modified amino acids correspond to residues 200 and 118, respectively, in testicular ACE (human enzyme numbering). Both peptides are present only in the carboxy-terminal half-domain of lung ACE, corresponding to residues 776 and 694, respectively. These results indicate that the Dnp-F sensitive, catalytically functional active site is located in the "testicular" half of lung ACE.  相似文献   

4.
The alpha-chain of the fourth component of complement (C4) contains tyrosine sulfate (Karp, D.R. (1983) J. Biol. Chem. 258, 12745-12748). Here we have determined the site and stoichiometry of sulfation of C4 secreted by the human hepatoma-derived cell line Hep G2. C4 was labeled with [35S]sulfate and isolated from culture medium by immunoprecipitation. C4 digested with trypsin and chymotrypsin and analyzed by reverse-phase high-performance liquid chromatography contained a single sulfate-labeled peptide. Digestion of C4 with trypsin alone yielded two major sulfate-labeled peptides, suggesting that there may be some sequence variability in C4 near the site of sulfation. Sequential Edman degradation of tryptic peptides labeled with [3H]tyrosine and [35S]sulfate detected tyrosine residues at positions 5, 13, 16, and 18. Chymotrypsin cleaved 5 residues off the NH2-terminal end of tryptic peptides, yielding a peptide with tyrosine at positions 8, 11, and 13. Comparison of the position of tyrosine residues with the reported sequence of C4 identified the sites of sulfation as tyrosine residues at positions 738, 741, and 743 in the alpha-chain of C4. All 3 of these tyrosine residues appeared to be sulfated. When sulfation of C4 was partially inhibited by addition of catechol to culture medium, three different forms of the peptide were resolved by high-performance liquid chromatography, consistent with peptides containing 1, 2, or 3 sulfates. Comparison of the quantities of tyrosine and tyrosine sulfate in C4 which had been labeled with [3H]tyrosine and digested with Pronase also indicated that C4 contained an average of 2-3 residues of tyrosine sulfate/molecule. These results suggest that the biologically active form of the protein is sulfated.  相似文献   

5.
P Bünning  S G Kleemann  J F Riordan 《Biochemistry》1990,29(46):10488-10492
The peptidase and esterase activities of rabbit pulmonary angiotensin converting enzyme (ACE) are rapidly abolished on reaction with 1-fluoro-2,4-dinitrobenzene (Dnp-F). Inactivation follows first-order kinetics with respect to the reagent and is accompanied by stoichiometric incorporation of 3,5-[3H]Dnp, indicating that the effect is due to a specific modification of the enzyme. Thin-layer chromatography of an acid hydrolysate of the modified enzyme indicates that most of the radioactive label is present as O-Dnp-tyrosine (65 to greater than 95%) and the rest as N epsilon-Dnp-lysine. The pH dependence of the reaction is consistent with modification of either tyrosine or lysine. The presence of a competitive inhibitor effectively protects the enzyme against inactivation by Dnp-F. Acetylation of ACE with N-acetylimidazole also protects the enzyme against modification with Dnp-F. The results indicate the presence of catalytically essential tyrosine and lysine residues at the active site of ACE.  相似文献   

6.
Chemical properties of the functional groups of insulin.   总被引:2,自引:2,他引:0  
Y K Chan  G Oda    H Kaplan 《The Biochemical journal》1981,193(2):419-425
The method of competitive binding [Kaplan, Stevenson & Hartley (1971) Biochem. J. 124, 289-299] with 1-fluoro-2,4-dinitrobenzene as the labelling reagent [Duggleby & Kaplan (1975) Biochemistry 14, 5168-5175] was used to determine the chemical properties, namely pK and reactivity, of the amino groups, the histidine residues and the tyrosine residues of the dimeric form of pig zinc-free insulin at 20.0 degrees C. The N-terminal glycine residue of the A-chain has a pK of 7.7 and a slightly higher than normal reactivity. The N-terminal phenylalanine residue of the B-chain has a pK of 6.9 and is approximately an order of magnitude more reactive than a corresponding amino group with the same pK value. The lysine epsilon-amino group has an unusually low pK of 7.0 but has approximately the expected reactivity of such a group. In the case of the two histidine and four tyrosine residues only the average properties of each class were determined. The histidine residues have a pK value of approx. 6.6, but, however, their reactivity is at least an order of magnitude greater than that of a free imidazole group. The tyrosine residues have a pK value of approx. 10, but their average reactivities are substantially less than for a free phenolic group. At alkaline pH values above 8 the reactivity of all the functional groups show sharp discontinuities, indicating that insulin is undergoing a structural change that alters the properties of these groups.  相似文献   

7.
The reactive sulfhydryl group (SHD) (Kawakita et al. (1980) J. Biochem. 87, 609-617) which is essential for the decomposition of the E-P intermediate of Ca2+-transporting ATPase of the rabbit skeletal muscle sarcoplasmic reticulum has been identified. One sample of sarcoplasmic reticulum membranes was reacted for 3 min with 0.4 mM N-[3H]ethylmaleimide at pH 7.0 at 30 degrees C to a labeling density of 1 mol/mol ATPase without loss of the Ca2+-transporting activity. Another sample of the membranes was treated similarly with non-radioactive N-ethylmaleimide and then labeled with 0.4 mM N-ethyl[14C]maleimide for 17 min. An extensive loss of the Ca2+-transporting activity occurred during the period of this radio-labeling, thus substantiating the 14C-labeling of SHD. The labeled membranes were digested by thermolysin, and the labeled peptides were fractionated by gel filtration and reversed-phase HPLC. Two major radioactive peptides were present in both 3H- and 14C-labeled thermolytic digests, and each of the major components of 14C-labeled peptides had a counterpart in the major components of 3H-labeled peptides which behaved identically on HPLC. The major 14C-labeled peptides were purified and found to be identical with the two SHN peptides, TL-I and TL-II (Saito-Nakatsuka et al. (1987) J. Biochem. 101, 365-376), and 0.5 mol/mol ATPase each of Cys344 and Cys364 was assigned as SHD. It seems that the Ca2+-transport system retains its activity while either of the two Cys residues is unoccupied, but loses it when both of them are modified with N-ethylmaleimide.  相似文献   

8.
Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.  相似文献   

9.
6-Hydroxybenzofuran and phenylhydrazine are mechanism-based inhibitors of dopamine beta-hydroxylase (D beta H; EC 1.14.17.1). We report here the isolation and characterization of radiolabeled peptides obtained after inactivation of D beta H with [3H]6-hydroxybenzofuran and [14C]phenylhydrazine followed by digestion with Staphylococcus aureus V8 protease. Inactivation of D beta H with [3H]6-hydroxybenzofuran gave only one labeled peptide, whereas inactivation with [14C]phenylhydrazine gave several labeled peptides. Each inhibitor labeled a unique tyrosine in the enzyme corresponding to Tyr477 in the primary sequence of the bovine enzyme (Robertson, J. G., Desai, P. R., Kumar, A., Farrington, G. K., Fitzpatrick, P. F., and Villafranca, J. J. (1990) J. Biol. Chem. 265, 1029-1035). In addition, [14C]phenylhydrazine also labeled a unique histidine (His249) as well as several other peptides. Examination of the complete peptide profile obtained by high pressure liquid chromatography analysis also revealed the presence of a modified but nonradioactive peptide. This peptide was isolated and sequenced and was identical whether the enzyme was inactivated by 6-hydroxybenzofuran or phenylhydrazine. An arginine at position 503 was missing from the sequence cycle performed by Edman degradation of the modified peptide, but arginine was present in the identical peptide isolated from native dopamine beta-hydroxylase. These data are analyzed based on an inactivation mechanism involving formation of enzyme bound radicals (Fitzpatrick, P. F., and Villafranca, J. J. (1986) J. Biol. Chem. 261, 4510-4518) interacting with active site amino acids that may have a role in substrate binding and binding of the copper ions at the active site.  相似文献   

10.
This article deals with the elucidation of the steroid-binding site of human sex hormone-binding globulin (SHBG). 17 beta-Bromoacetoxydihydrotesterone (BA-DHT) reacted with highly purified SHBG in a time-dependent and irreversible fashion. The interaction could be totally inhibited by the simultaneous addition of an excess of dihydrotesterone. At the completion of the reaction, the molar ratio of BA-DHT to SHBG was approximately unity. SHBG was affinity labeled with [14C]BA-DHT and submitted to acid hydrolysis. The released amino acids were evaluated on high performance liquid chromatography, and virtually all of the 14C was identified as 3-[14C]carboxymethylhistidine. Furthermore, [14C]BA-DHT-labeled SHBG was digested with trypsin, followed by isolation of the released tryptic peptides by reverse-phase high performance liquid chromatography. The 14C was localized to a single tryptic peptide. It contained 2' histidyl residues, corresponding to residues 235 and 251 in the known amino acid sequence of SHBG. Although most of the 3-[14C]carboxymethylhistidine, or its phenylthiohydantoin derivative, was trapped on the filter of the amino acid sequenator, sufficient radioactivity emerged to identify histidyl residue 235 as the labeled amino acid.  相似文献   

11.
Pig heart NADP-specific isocitrate dehydrogenase is inactivated by N-ethylmaleimide (NEM) (Colman, R. F., and Chu, R. (1970) J. Biol. Chem. 245, 601-607), and is completely protected against inactivation, but not against the incorporation of NEM, by isocitrate plus Mn2+. We have now treated the enzyme with [3H]NEM in the absence and presence of isocitrate plus Mn2+, digested it with trypsin, and isolated and sequenced the labeled Cys peptides. In the inactive enzyme, two major peptides, SSGGFVWACK and DLAGCIHGLSNVK, and two minor peptides, CATITPDEAR and EPIICK, were labeled at Cys. Upon reaction with [3H]NEM in the presence of isocitrate plus Mn2+, full catalytic activity was retained and only DLAGCIHGLSNVK was labeled; the Cys of this peptide is therefore not essential for catalysis. The modification of SSGGFVWACK appears to be the major cause of inactivation by NEM. The Cys in SSGGFVWACK may have a catalytic role, most likely in the strengthened binding of Mn2+ in the presence of isocitrate. Isocitrate dehydrogenase was carboxymethylated under denaturing conditions with [14C]iodoacetate and digested with trypsin; 6 unique labeled Cys peptides, containing 6 unique Cys residues, were purified and sequenced. Six corresponding peptides were isolated from enzyme treated under denaturing conditions with [3H]NEM. These results eliminate the previous uncertainty regarding the number of Cys residues in the enzyme. A comparison of the sequences of the NH2-terminal 30 residues and the 6 Cys peptides of the pig heart NADP-dependent isocitrate dehydrogenase with the Escherichia coli NADP enzyme provides evidence for great dissimilarity between the two enzymes.  相似文献   

12.
The amino acid sequence of an octapeptide from the catalytic site of human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) was established by affinity-labeling techniques. The enzyme was inactivated separately by 12 beta-hydroxy-4-estrene-3,17-dione 12-(bromo[2-14C]acetate) and 3-methoxyestriol 16-(bromo[2-14C]acetate) at pH 6.3. The inactivations, in both cases, followed pseudo-first-order kinetics with half-times for the 12 beta and 16 alpha derivatives being 192 and 68 h, respectively. Both derivatives are known substrates that inactivate in a time-dependent, irreversible manner and that modify cysteine residues to form (carboxymethyl)cysteine and histidine residues to form either N tau- or N pi-(carboxymethyl)histidine. The inactivated enzyme samples were separately reduced, carboxymethylated, and digested with trypsin. The tryptic digests were applied to Sephadex G-50 and the radioactive N tau- and N phi-(carboxymethyl)histidine-bearing peptides identified. The peptides were further purified by cation-exchange chromatography and gel filtration. Final purification was achieved by HPLC prior to sequencing. It was determined that both steroid derivatives modified either of the two histidine residues in the peptide Thr-Asp-Ile-His-Thr-Phe-His-Arg. These histidines are different from a histidine that was previously shown to be alkylated by estrone 3-(bromoacetate) and that was presumed to proximate the A ring of the bound steroid. It is concluded that the two histidine residues identified in the present study proximate the D ring of the steroid as it binds at the active site and may participate in the hydrogen transfer effected by human placental estradiol 17 beta-dehydrogenase.  相似文献   

13.
Ca2+-Transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum contains several SH groups which are reactive with N-ethylmaleimide (MalNEt) at pH 7.0. The location of the one which is most reactive with MalNEt (SHN, Kawakita et al. J. Biochem. 87, 609 (1980)) was identified on the amino acid sequence of the ATPase. SHN was labeled by reacting sarcoplasmic reticulum membranes with [14C] MalNEt to a labeling density of 1 mol/mol ATPase. [14C]MalNEt-labeled membranes were digested with thermolysin and 14C-labeled SHN peptides were fractionated by Sephadex LH-20 chromatography to give two major peaks of radioactivity. [14C]-MalNEt-labeled peptides were further purified to homogeneity by C18-reversed phase HPLC. Two radioactive peptides containing modified cysteine (Cys), Leu-Gly-Cys-Thr-Ser and Val-Cys-Lys-Met, were finally obtained in roughly equal amounts and in reasonable recovery. Both of these sequences were found in the amino acid sequence of Ca2+-transporting ATPase (Brandl et al. Cell 44, 597 (1986)), and Cys344 and Cys364 were identified as the targets of MalNEt-modification. Thus, 0.5 mol/mol ATPase of each Cys residue actually reacted rapidly with MalNEt under the conditions leading to SHN-modification. Modification of either one with MalNEt may negatively affect the reactivity of the other. Both of the highly reactive SH groups are located in the neighborhood of Asp351, the phosphorylation site of ATPase.  相似文献   

14.
A base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi (RNase M) was modified by [14C]iodoacetic acid. RNase M was inactivated with concomitant incorporation of about 1 mol equivalent of carboxymethyl group. Carboxymethylated RNase M (CM RNase M) thus obtained was reduced and carboxymethylated (RCM CM RNase M). From tryptic and chymotryptic digests of RCM CM RNase M, two carboxymethylated histidine-containing peptides labeled with radioactivity were isolated. The amino acid sequences of these two peptides were determined to be Thr-Ile-His-Gly-Leu-Trp-Pro-Asp-Asn-Cys-Asp-Gly-Ser-Tyr... and His-Gly-Thr-Cys-Ile-Asn-Thr-Ile-Asp-Pro-Ser-Cys-Tyr-Pro-Asp-Asp-Tyr-Ala. .... The distribution of the radioactivity on the former and latter peptides was 43% and 57%, respectively. The results indicated that two histidine residues are involved in the active site of RNase M, and the modification of either one of the two histidine residues inactivates RNase M. The CD spectrum of carboxymethylated RNase M indicated that some tryptophan residue(s) with a CD band at 287 nm is in the proximity of the active site histidine residues of RNase M.  相似文献   

15.
The initiation of the processing of apomucin was investigated using mucus glycoprotein synthesizing polysomes from rat gastric epithelial cells. The polysomes were isolated from cells labeled with [3H]palmitic acid and [14C]N-acetylgalactosamine, purified on Helix pomatia-Sepharose affinity column, dissociated to release peptidyl-tRNA, and chromatographed on DEAE-HPLC column to separate peptidyl-tRNA complexes from the free and ribosomal RNA and proteins. The analysis of the HPLC purified peptidyl-tRNA revealed that complexes were labeled with [3H]palmitic acid and [14C]N-acetylgalactosamine. Digestion of the peptidyl-tRNA with RNase released 3H and 14C labeled peptides, while alkaline degradation destroyed the complex and rendered the [3H]palmitic acid extractable with hexane. The treatment of the 3H and 14C labeled peptidyl-tRNA complexes with alpha-N-acetylgalactosaminidase led to the release of radiolabeled N-acetylgalactosamine, whereas alkaline borohydride reduction produced N-acetylgalactosaminitol. The fatty acid residues have been detected in peptidyl-tRNA containing 2,000Da peptides, whereas N-acetylgalactosamine was discernible on 5,000Da peptides.  相似文献   

16.
We reported previously that the ADP-ribosyltransferase in C1 and D botulinum toxins specifically catalyzes ADP-ribosylation of an Mr 22,000 guanine nucleotide-binding protein and that this substrate named Gb (b = botulinum) has an amino acid sequence homologous to that deduced from the rho gene (Narumiya, S., Sekine, A., and Fujiwara, M. (1988) J. Biol. Chem. 263, 17255-17257). In this study we have determined the amino acid sequence at its ADP-ribosylation site. Purified substrate was [32P]ADP-ribosylated by C1 botulinum toxin and digested with trypsin. The radioactive peptides were isolated by reversed-phase high performance liquid chromatography and digested further either with protease V8, with proteases V8 and thermolysin, or with proline endopeptidase and thermolysin. By this procedure three radioactive peptides were obtained, and their amino acid sequences were X-Tyr-Val-Ala-Asp-Ile-Glu, X-Tyr, and Val-Phe-Glu-X-Tyr in which no amino acid peak was found in X. During the sequencing the radioactivity quantitatively adhered to the sequencing filter and was not eluted with either of the identified amino acid residues. Analysis of the protein without the ADP-ribosylation yielded the corresponding sequence as Thr-Val-Phe-Glu-Asn-Tyr which corresponds to Thr37-Tyr42 in the amino acid sequence deduced from the Aplysia rho gene. These results strongly suggest that the asparagine residue is the ADP-ribosylation site in the rho gene product. This ADP-ribose protein bond was stable in 0.5 M hydroxylamine at pH 7.5 at 37 degrees C for at least 5 h. The ADP-ribosylation of this protein affected neither its GTPase- nor its [35S]guanosine 5'-O-thiotriphosphate-binding activity.  相似文献   

17.
Human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) was affinity-labeled at pH 6.3 by 3-bromo[2'-14C]acetoxyestrone and 12 beta-bromo-[2'-14C] acetoxy-4-estrene-3,17-dione (both are substrates) in separate incubations. The affinity-alkylated enzyme samples were then treated separately as described below. Amino acid compositions of both samples revealed radioactive 3-carboxymethylhistidine. Tryptic digests of each sample were prepared, applied to Sephadex G-50, and 3-carboxymethylhistidine-bearing fractions identified. These peptides were further purified by cation exchange chromatography, gel filtration, and paper electrophoresis. The purified, 3-carboxymethylhistidine-bearing peptides labeled by the two steroids had identical electrophoretic mobilities at pH 6.5, 3.5, and 1.9. The amino acid sequence of the radioactive peptide alkylated by 3-bromo[2'-14C]acetoxyesterone was determined as: Leu-Ala-3-[14C]CmHis-Ser-Lys. The smaller quantity of peptide obtained from the inactivation with 12 beta-bromo[2'-14C]acetoxy-4-estrene-3,17-dione precluded the determination of its complete sequence. However, the first 3 residues were found to be Leu-Ala-3-[14C]CmHis and the amino acid composition showed that serine and lysine were also present. It is concluded that the steroid-binding site of human placental estradiol 17 beta-dehydrogenase contains a histidine residue which proximates the upper A-ring region of the steroid as it undergoes the reversible binding step.  相似文献   

18.
Site of attachment of 11-cis-retinal in bovine rhodopsin   总被引:9,自引:0,他引:9  
A dipeptide containing the binding site for retinal in bovine rhodopsin has been isolated and its sequence determined. Rhodopsin containing [11-3H]retinal was prepared in chromatographically pure form, and the [3H]retinal was reductively linked to its binding site on opsin by using borane--dimethylamine. The [3H]retinylopsin in octyl glucoside was exhaustively digested with Pronase, and its peptides were separated on silica gel in chloroform/methanol/ammonia [Bownds, D. (1967) Nature (London) 216, 1178--1181] followed by silica gel thin-layer chromatography in two solvent systems. The major retinyl peptide was shown to be alanyl-N epsilon-retinyllysine by amino acid composition, 3H content, and amino acid sequence analysis. The retinyl binding site is located in the carboxyl-terminal region of rhodopsin: when rod cell disk membranes containing [3H]retinal rhodopsin were digested with thermolysin and then reacted with sodium borohydride or borane--dimethylamine, [3H]retinal was reduced onto the F2 (Mr congruent to 6000) fragment, which derives from rhodopsin's carboxyl-terminal region.  相似文献   

19.
Homogeneous 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD, EC 1.1.1.50) of rat liver cytosol is potently inhibited at its active site by nonsteroidal anti-inflammatory drugs (NSAIDs). Using 3 alpha-bromoacetoxy-5 alpha-androstan-17-one (BrAnd, a substrate analog) and 11 alpha-bromoacetoxyprogesterone (Br11P, a glucocorticoid analog) as affinity-labeling agents, kinetic evidence was obtained that these agents alkylate this site. Inactivation of 3 alpha-HSD with either [14C]BrAnd or [14C] Br11P led to the incorporation of 1 mol of affinity-labeling agent per enzyme monomer. Complete acid hydrolysis of 3 alpha-HSD radiolabeled with either agent followed by amino acid analysis led to the identification of [14C]carboxymethylcysteine indicating that [14C]BrAnd and [14C]Br11P covalently tag discrete reactive cysteine(s) at the enzyme active site. Trypsin digestion of [14C]BrAnd-inactivated 3 alpha-HSD followed by peptide mapping led to the purification of a single radiolabeled peptide (3A1) which gave the following sequence: H2N-Ser-Ile-Gly-Val-Ser-Asn-Phe-Asn-X-Arg-CO2H. Identical experiments on [14C] Br11P-inactivated 3 alpha-HSD led to the purification of three radiolabeled peptides (11P1-11P3). The major radiolabeled peptide (11P1) had an identical sequence to 3A1 which was tagged with [14C]BrAnd. The minor radiolabeled peptides had the following sequences: H2N-Ser-Lys-Asp-Ile-Ile-Leu-Val-Ser-Tyr-X-Thr-Leu-Gly-Ser-Ser-Arg-CO2H (11P2) and H2N-Ser-Pro-Val-Leu-Leu-Asp-Asp-Pro-Val-Leu-X-Ala-Ile-Ala-Lys-CO2H (11P3). In each peptide group X was identified as carboxymethylcysteine. Alignment of the peptide sequences with the primary structure of 3 alpha-HSD, deduced from its cDNA clone, assigned peptide 11P1 to residues 162-171, peptide 11P2 to residues 208-223, and peptide 11P3 to residues 232-246 of the amino acid sequence. The reactive cysteines correspond to Cys170, Cys217, and Cys242. We propose that Cys170 labeled by BrAnd may lie within the catalytic pocket of the enzyme. By contrast the 11 alpha-bromoacetoxy group in Br11P labeled several reactive cysteines which may be involved in the binding of glucocorticoids and NSAIDs.  相似文献   

20.
1-Fluoro-2,4-dinitrobenzene can be used to selectively label histidine, tyrosine, and cysteine residues in maleylated proteins. The usefulness of the resulting chromophores for peptide mapping by high-performance liquid chromatography was demonstrated with the lectin from sainfoin (Onobrychis viciifolia). The 2,4-dinitrophenyl (Dnp) label also can be used in a hydrophobic modulation approach as the mobility of a labeled model peptide changes considerably when its Dnp group is removed by thiolysis. Application of the method for checking sequences obtained by DNA or amino acid methods was shown by experiments with Viciae lectins. The probable cleavage site that generates the pea lectin's beta-chain from the alpha-beta precursor was identified and the sequence differences between the lentil and pea lectin beta-chains were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号