首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Are there effects of long‐term deposition of airborne nitrogen and sulphur on the forest floor vegetation from permanent plots collected in 1993 compared to 2005. Location: Northern limestone Alps in Austria. Methods: Single species responses were analysed by correlating trends in cover‐abundance values, as derived from marginal models, with Ellenberg indicator values. Changes in the species composition of plots were analysed by correlating changes in mean Ellenberg indicator values with the displacement of plots within a multidimensional scaling ordination. Results: Trends in single species abundance were positively correlated with indicator values of soil pH but were independent of nutrient availability. A general trend towards the homogenisation of vegetation, due to convergent time vectors of the relevés, became obvious. Oligotrophic sites previously situated at the distal ends of ordination axes shifted towards the centre since they were enriched by species preferring mesotrophic conditions. The bulk of plots with intermediate site conditions hardly showed any trends. A concomitant analysis demonstrated that temporal changes in species composition exceed the variation in cover abundance estimates among different field botanists. Conclusions: N deposition can lead to a homogenisation of forest floor vegetation. Larger limestone areas with diverse soil conditions, such as the Northern limestone Alps in Austria, as a whole are thus negatively affected by airborne N deposition. Nevertheless, the vegetation was at least as strongly affected by an increase of basiphilous species as a result of decreasing S deposition.  相似文献   

2.
Abstract Although there is no one correct technique for sampling vegetation, the sampling design chosen may greatly influence the conclusions researchers can draw from restoration treatments. Considerations when designing vegetation sampling protocol include determining what sampling attributes to measure, the size and shape of the sampling plot, the number of replicates and their location within the study area, and the frequency of sampling. We installed 20 point‐intercept transects (50‐m long), 8 belt transects (10 × 50 m), 10 adapted Daubenmire transects (four 0.5 × 2‐m plots), and 4 modified‐Whittaker plots (20 × 50 m with smaller nested plots) in treatment and control units to measure understory herbaceous response in a forest restoration experiment that tested different treatments. Point‐intercept transects on average recorded at least twice as much plant cover as did adapted Daubenmire transects and modified‐Whittaker plots taken at the same location for all control and treatment units. Point‐intercept transects and adapted Daubenmire plots on average captured fewer rare and exotic species in the control and treatment units in comparison with the belt transects and modified‐Whittaker plots. Modified‐Whittaker plots captured the highest species richness in all units. Early successional understory response to restoration treatments was likely masked by the response of the herbaceous community to yearly climatic variation (dry vs. wet years). Species richness and abundance were higher in wet years than dry years for all control and treatment units. Our results illustrate that sampling techniques can greatly influence perceptions of understory plant trajectories and therefore the interpretation of whether restoration goals have been achieved. In addition, our results suggest that restoration monitoring needs to be conducted for a sufficient length of time so that restoration treatment responses can be detected.  相似文献   

3.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

4.
We studied the effects of restoration on water‐table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long‐term rise of the water‐table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long‐term monitoring is needed to determine whether the goals of restoration will be met.  相似文献   

5.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

6.
Previous studies have compared grassland restoration techniques based on resulting species richness and composition. However, none have determined if different techniques generate different plant distributions in space, which may further impact restoration success. This study tests if there are quadrat‐scale (1 m2) differences between paired drilled and broadcast plantings in diversity, composition, and plant distributions. Higher competition intensity in and more contiguous spaces between rows in drill‐seeded restorations were hypothesized to result in larger patches of native grasses and exotic species. Two paired drill‐ and broadcast‐seeded plantings were sampled in June 2007 in Iowa, U.S.A. Within 10 quadrats in each planting, we measured species abundance with point intercept sampling and plant distributions by dividing the quadrat into 64 cells and recording the most abundant species in each cell. Drilled and broadcast plantings at both sites had similar Simpson’s diversity and evenness. However, the effect of planting type on species richness, composition, and plant distribution was site dependent. Native warm‐season grasses in one site, and exotic species in the second, occupied more space and were distributed in larger patches in drilled plantings. Furthermore, drilled canopies consistently captured more light than broadcast canopies. This suggests that initial differences in seed placement can affect resulting plant distributions, resource use, and potentially long‐term species turnover. Mechanisms structuring vegetation in these communities need to be further investigated to determine if this approach can provide more information on long‐term diversity maintenance in restorations than traditional measures.  相似文献   

7.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

8.
Forest management practices have the potential to impact upon native vegetation. Most studies focus on the effects of management on the above‐ground vegetation communities, with little attention given to the soil stored seed bank. Here we examine the soil stored seed bank of a long‐term experimental site in south‐eastern Australia, which has experienced timber harvesting and repeated prescribed burning over a 20‐year period. At each of 213 long‐term vegetation measurement plots, 3.5 kg of soil was collected and germinated in a glasshouse over a period of 2 years. Comparisons were made between the experimental treatments considering differences in species richness, abundance and community composition of the understorey seed bank. Logged sites had a higher diversity and abundance of seedlings compared with unlogged sites, which is consistent with observed changes in standing vegetation within 10 years following logging. Prescribed burning resulted in a lower diversity and abundance of seedlings, which contrasts with the increase in species diversity observed in response to frequent fire in standing vegetation. Individual taxa that declined in the seed bank in response to frequent fire were all taxa for which germination is enhanced by exposure to smoke. Contrary to expectations, these did not exhibit a corresponding decline as standing plants. While management actions above ground are having minor impacts, greater effects were seen in the soil stored seed bank.  相似文献   

9.
Restoration treatments have been widely advocated to address declining conditions in Pinus ponderosa forests throughout the western United States. However, few studies have examined treatment effects on individual plant species or whether responses differ for common species and uncommon species (those with low abundance in the community)—information that may be critical in managing for long‐term biodiversity. We investigated understory species responses to restoration treatments in ponderosa pine/Douglas‐fir forests using a randomized block experimental design with three blocks and four treatments (control, burn‐only, thin‐only, and thin‐burn). Understory vegetation was sampled before treatment and for three consecutive years after treatment. We used richness and an index of uniqueness to compare responses of common and uncommon native understory species among treatments, and indicator species analysis to identify individual species that responded to each treatment. Treatments that included thinning had significantly more unique species assemblages than the control. The thin‐only treatment increased common native species richness, whereas all active treatments significantly increased uncommon native species richness over the control, especially the thin‐burn. Generally, life‐forms did not explain the responses of individual species, though in the final sampling year several graminoids were exclusively indicative of treatments that included thinning. Very few species had reduced abundance in the thinning and burning treatments by the final sample year, whereas many uncommon and short‐lived species benefited from active treatments, especially the combined thin‐burn treatment. Active restoration treatments in these forests may foster plant diversity by minimally impacting common species while significantly benefiting disturbance‐dependent native species.  相似文献   

10.
Grasslands are among the most imperiled North American ecosystems. State Acres for Wildlife Enhancement (SAFE) is a national conservation program that converts agricultural fields into grasslands mainly to improve habitat for high priority wildlife species. To provide a broader assessment of the contribution of the SAFE program to biodiversity in the Midwest region of North America, we evaluated local and landscape constraints to restoration of small mammal communities. We livetrapped small mammals during three summers (2009–2011) on plots that were recently seeded, seeded 1–4 years prior to sampling, or established references (>10 years old). Restoration trajectories for small mammal communities included a shift over time from dominance by the habitat generalist Peromyscus maniculatus (deer mouse) to communities dominated by grassland Microtus species (prairie voles and meadow voles). Vole abundance during the first year following restoration depended on spatial connectivity provided by linear habitats (roadside ditches and grass waterways) within 300 m of the restored grassland. Patch size and seeding type (cool‐season versus warm‐season grasses) were not predictors of early restoration success. In 2011, voles experienced a severe regional decline consistent with multi‐year population cycles. During the crash, most remaining voles occurred on restored SAFE grasslands, but not on established grasslands. This surprising outcome suggests young restoration plots could function as refuges for voles during population declines in agricultural landscapes.  相似文献   

11.
Question: What is the relationship between plant diversity and species turnover in coastal dune vegetation plots? How is the long‐term change in species composition of vegetation plots related to shifts in functional traits, and what does it tell us about the dominant processes? Location: Coastal dunes, the Netherlands. Methods: Our data set comprised 52 years of vegetation data from 35 permanent plots in grassland/scrub/woodland vegetation. Vegetation dynamics were described in terms of changes in species composition and abundance, and shifts in 13 functional traits related to resources capture and forage quality, regeneration and dispersal. Results: Species turnover in the plots was high, because of local extinction and colonization. Species‐rich plots were more stable in terms of species abundance and composition compared with species‐poor plots. Over time, the plots converged with respect to their abiotic conditions, as reflected by Ellenberg indicator values – indicating that the prevailing process was succession. The high species turnover reflected high invasibility: accordingly, the relative importance of annuals increased. Most newcomer annuals, however, were competitive generalists of little conservation value. The functional trait analysis allowed us to unravel the complexity of effects of disturbances and succession, and yielded information on the processes driving the observed vegetation dynamics. Conclusions: In this study, small‐scale species turnover was negatively related to species diversity, indicating more stability in species‐rich communities. Regarding shifts in trait diversity, unifying filters appeared to be more dominant than diversifying filters. Counteracting this homogenization process poses a challenge for nature management.  相似文献   

12.
Grasslands are undergoing tremendous degradation as a result of climate change, land use, and invasion by non‐native plants. However, understanding of the factors responsible for driving reestablishment of grassland plant communities is largely derived from short‐term studies. In order to develop an understanding of the factors responsible for longer term restoration outcomes in California annual grasslands, we surveyed 12 fields in Davis, CA, U.S.A., in 2015 that were seeded with native species mixtures starting in 2004. Using field surveys, we investigated how invasive plant richness and cover, native plant richness and cover, aboveground biomass, grazing, soil type, and restoration species identity might provide utility for explaining patterns of restoration success. We found a negative relationship between invasive cover and restoration cover, which was attributed to the slow establishment of seeded species and subsequent dominance by weeds. The relationship between invasive cover and restoration cover was modified by grazing, likely due to a change in the dominance of exotic forbs, which have a more similar growing season to restoration species, and therefore compete more strongly for late season moisture. Finally, we found that soil type was responsible for differences in the identity and abundance of invasive plants, subsequently affecting restoration cover. This work highlights the value of focusing resources on reducing invasive species cover, limiting grazing to periods of adequate moisture, and considering soil type for successful long‐term restoration in California annual grasslands. Moreover, observations of long‐term restoration outcomes can provide insight into the way mechanisms driving restoration outcomes might differ through time.  相似文献   

13.
Ecologists have found the distributions of many groups of organisms to be elevationally stratified. Consequently, various taxa (or species) have been proposed as indicators for inclusion within long‐term monitoring programmes to quantify the ecological impacts of future climatic change. Ideal indicators should be restricted to a particular elevational range (i.e. have high specificity) and be readily detectable across space and time (i.e. have high fidelity). This, however, has not been rigorously tested for elevational studies. We employed a spatially and temporally replicated sampling design to test the utility of tree, ant, and canopy and understorey moth species as indicators of elevation within continuous subtropical rainforest of eastern Australia. Using the classical indicator value protocol, we tested (i) whether the number of indicator species (all taxa) found in the observed data was significantly greater than the number obtained by chance; (ii) whether the indicator species (ants and moths) identified from one sampling season responded to elevation in a similar way in samples obtained from other seasons; and (iii) whether the indicator species (ants) identified from one elevational transect responded to elevation in a similar way in a nearby transect that incorporated similar elevational ranges. All groups had significantly greater numbers of indicator species than expected by chance. Temporal fidelity of moth indicator species was lower than that of ants as the suite of moth indicator species showed high seasonal variation. In contrast, ants showed high spatial and temporal fidelity. Most ant indicator species were, however, indicative of low and mid‐elevations, and only one species was indicative of the highest elevation, suggesting their relatively low conservation significance in relation to climate warming in this region. It is essential that we understand how spatial and temporal variation affects the distributions of different taxonomic groups when incorporating multiple taxa for long‐term monitoring programmes.  相似文献   

14.
Restoring habitat degraded by invasive species is often a primary focus of conservation strategies, yet few studies investigate the effects of invasive species control on multiple at‐risk taxa. Selective herbicides are increasingly used because they can selectively reduce aggressive invasive plant species with the aim of minimizing effects on other taxa within the habitat. We conducted a four‐year experiment to test how annual application of grass‐specific herbicide affected the demography on Fender's blue butterfly (Icaricia icarioides fenderi) and Kincaid's lupine (Lupinus oreganus), two federally protected species which persist in highly degraded prairie remnants in western Oregon, USA. Effects of herbicide application were transitory for the butterfly; reduction of invasive grasses increased fecundity and led to higher annual population growth (λ) at one of two conservation areas in the first season. There were no detectable differences in λ in subsequent seasons—suggesting that treatments caused neither extensive harm nor extensive benefit to the butterfly population. For the lupine, there were no detectable differences in leaf and flower abundance between control and herbicide treatments. However, greater seed production in herbicide plots in the first and third seasons suggests that lupines in herbicide‐treated plots have greater potential reproductive success. While treatments do not have a long‐term benefit to annual population growth for the butterfly, increasing reproductive success of the threatened plant may justify integrating this strategy into restoration plans. Considering the impact of restoration practices on the demography of multiple at‐risk taxa within a community is critical to effective recovery strategies.  相似文献   

15.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

16.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   

17.
王永健  陶建平  张炜银  臧润国  丁易  李媛  王微 《生态学报》2006,26(11):3525-3532
通过样带调查和TWINSPAN、DCCA分析,从植物种、植物群落及其多样性与环境关系方面,研究了岷江上游土地岭大熊猫走廊带恢复植被的干扰状况。结果表明:应用TWINSPAN分类,并结合优势种组成、干扰状况分析及DCCA排序,可将植被划分为6个群落类型,同时划分出响应型、迟钝型、中度干扰忍耐型和重度干扰忍耐型4类干扰响应的植物类型。以样方物种和以样方多样性指数的DCCA分析结果基本一致,物种及群落的空间分布呈明显的聚集格局,反映其与环境因子间的密切关系。DCCA排序图上,海拔差、坡形、与公路距离、坡度及道路条数对群落和物种分布有明显的影响,与干扰相关性最大的坡度、样地道路数目、与公路间的距离3个因子反映了植被的干扰梯度。干扰对土地岭恢复植被影响显著,干扰降低了群落的物种多样性,同时阻碍了演替进程。  相似文献   

18.
The status of woody seedling colonization gives clues about the self‐sustainability of restored forests, a tenet of restoration success. Little is known about woody seedling colonization in restored afrotropical forests. We evaluated effects of restoration methods (active vs. passive), sampling year, restoration age, and distance from old‐growth forests on seedling colonization in restored afrotropical moist forests. Seedlings were measured in 2011 and 2014 in 71 clusters of 284 permanent sampling plots (12.6 m2 each) in actively (initially 3–16 years old) and 21 clusters of 63 plots in passively restored forests (initially 16 years old) in Kibale National Park, western Uganda. Seedlings were also measured in nearby old‐growth forests in three clusters of five plots in 2014. We determined species diversity, richness, abundance per plot, and species composition as measures of seedling colonization in restored and old‐growth forests. We found that diversity, richness, and abundance of seedlings were significantly higher in passively than actively restored forests. Diversity and richness but not abundance significantly increased between sampling years and with restoration age. Distance from old‐growth forests did not significantly affect diversity, richness, and abundance. Species composition of actively and passively restored forests was different from that of old‐growth forests after 19 years since restoration started. Our results show that passive restoration should be the preferred method for recovering afrotropical forests, and highlight the effect of continued management on biodiversity of restored forests.  相似文献   

19.
Riparian vegetation along the Sacramento River—California's largest river—has been almost entirely lost, and several wildlife species have been extirpated or have declined as a result. Large-scale restoration efforts are focusing on revegetating the land with native plants. To evaluate restoration success, we conducted surveys of landbirds on revegetated and remnant riparian plots from 1993 to 2003. Our objectives were to estimate population trends of landbirds, compare abundance patterns over time between revegetated and remnant riparian forests, and evaluate abundance in relation to restoration age. Of the 20 species examined, 11 were increasing, 1 was decreasing (Lazuli Bunting [ Passerina amoena ]), and 8 showed no trend. The negative trend for Lazuli Bunting is consistent with information on poor reproductive success and with Breeding Bird Survey results. There was no apparent guild association common to species with increasing trends. Nine species were increasing on revegetated and remnant plots, four were increasing on revegetated plots only, three were increasing on remnant plots only, the Lazuli Bunting was decreasing on both, and three species were stable on both. Although many species were increasing at a faster rate on revegetated plots, their abundance did not reach that of the remnant plots. For revegetated plots, "year since planting" was a strong predictor of abundance trends for 13 species: positive for 12, negative for 1. Our study shows that restoration activities along the Sacramento River are successfully providing habitat for a diverse community of landbirds and that results from bird monitoring provide a meaningful way to evaluate restoration success.  相似文献   

20.
Stream restoration affects stream biodiversity by improving water quality and habitat environments. Benthic macroinvertebrates are used as indicators of changes in stream environment, and, therefore, the effects of restoration can be evaluated by a long‐term monitoring of benthic macroinvertebrates. Cheonggye stream is an urban stream in Seoul, Korea, and a restoration project was conducted from July 2003 to September 2005. The purpose of this study was to investigate the long‐term changes in the benthic macroinvertebrate communities in Cheonggye stream after the restoration project in 2005. A 6‐year field study was seasonally conducted at five study sites in Cheonggye stream from November 2005 to October 2011. Benthic macroinvertebrates were sampled quantitatively using a Surber sampler (50 × 50 cm; mesh 0.25 mm, two replications per site). As a result, species richness of benthic macroinvertebrates rapidly increased after the restoration project and peaked (35 species per sample) in 2006 but gradually dropped to approximately 20 species up to the recent year. As a consequence, community indices changed gradually according to species richness and abundance: Dominance indices peaked in 2010 and species diversity indices (H') peaked in 2007. According to a functional feeding group analysis, the composition of collector–filterers increased at first, but the decreased gradually to the recent year. In contrast, collector–gatherers showed an opposite tendency. The composition of clingers increased during the initial 4 years (2005–2008), whereas burrowers rapidly increased after 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号