首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The invariant water molecular interaction involving in the Rusticyanin of Thiobacillus ferrooxidans is thought to be important for its molecular complexation with other proteins at differential acidophilic situation. The comparative analysis of the different x-ray, energy minimized, and auto solvated structures of Rusticyanin revealed the presence of five specific invariant bound water molecules (among the ~ 150 water molecules per monomer) in the crystals. The five W 205, W 206, W 112, W 214, and W 221 water molecules (in Rusticyanin PDB code: 1RCY) were seem to be invariant in all the seven structures (PDB codes: 1RCY, 1A3Z, 1A8Z, 1E3O, 1GY1, 1GY2, 2CAL). Among the five conserved water molecules the W 221 (of 1 RCY or the equivalent water molecules in the other oxidized form of Rusticyanin structures) had endowed an interesting coordination potentiality to Cu+2 ion during the energy minimization. The W 221 was observed to approach toward the tetrahedrally bonded Cu+2 ion through the opposite (or trans) route of metal-bonded Met 148. This direct water molecular coordination affected the tetrahedral geometry of Cu+2 to trigonal bipyramidal. Presumably this structural dynamics at the Cu+2 center could involve in the electron transport process during protein-protein complexation.  相似文献   

2.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   

3.
Matrix Metalloproteinase (MMP)--13 or Collagenase--3 plays a significant role in the formation and remodeling of bone, tumor invasion and causes osteoarthritis. Water molecular dynamic studies of the five (1XUC, 1XUD, 1XUR, 456C, 830C) PDB and solvated structures of MMP-13 in human have been carried out upto 5 ns on assigning the differential charges (+2, +1, +0.5 e) to both the Zinc ions. The MM and MD-studies have revealed the coordination of three water molecules (W(H), W(I) and W(S)) to Zn(c) and one water to Zn(s). The transition of geometry around the Znc from tetrahedral to octahedral via trigonal bipyramidal, and for Zn(s) from tetrahedral to trigonal bipyramidal are seem interesting. Recognition of two zinc ions through water molecular bridging (Zn(c) - W(H) (W(1))...W(2)....W(3)....H(187) Zn(s)) and the stabilization of variable coordination geometries around metal ions may indicate the possible involvement of Zn(c) ...Zn(s) coupled mechanism in the catalytic process. So the hydrophilic topology and stereochemistry of water mediated coupling between Zn-ions may provide some plausible hope towards the design of some bidentate/polydentate bridging ligands or inhibitors for MMP-13.  相似文献   

4.
Inosine monophosphate dehydrogenase (IMPDH) of human is involved in GMP biosynthesis pathway, increased level of IMPDH‐II (an isoform of enzyme) activity have found in leukemic and sarcoma cells. Modeling and extensive molecular dynamics simulation (15 ns) studies of IMPDH‐II (1B3O PDB structure) have indicated the intricate involvement of four conserved water molecules (W 1, W 2, W 3, and W 4) in the conformational transition or the mobilities of “flap” (residues 400–450) and “loop” (residues 325–342) regions in enzyme. The stabilization of active site residues Asn 303, Gly 324, Ser 329, Cys 331, Asp 364, and Tyr 411 through variable H‐bonding coordination from the conserved water molecular center seems interesting in the uninhibited hydrated form of human IMPDH‐II structures. This conformational transition or the flexibility of mobile regions, water molecular recognition to active site residues Cys 331 and Tyr 411, and the presence of a hydrophilic cavity ~540 Å3 (enclaved by the loop and flap region) near the C‐terminal surface of this enzyme may explore a rational hope toward the water mimic inhibitor or anticancer agent design for human. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Human GMP reductase (hGMPR) enzyme is involved in a cellular metabolic pathway, converting GMP into IMP, and also it is an important target for anti-leukemic agents. Present computational investigations explain dynamical behavior of water molecules during the conformational transition process from GMP to IMP using molecular dynamics simulations. Residues at substrate-binding site of cancerous protein (PDB Id. 2C6Q) are mostly more dynamic in nature than the normal protein (PDB Id. 2BLE). Nineteen conserved water molecules are identified at the GMP/IMP binding site and are classified as (i) conserved stable dynamic and (ii) infrequent dynamic. Water molecules W11, W14, and W16 are classified as conserved stable dynamic due to their immobile character, whereas remaining water molecules (W1, W2, W3, W4, W5, W7, W8, W9, W10, W12, W13, W15, W17, W18, and W19) are infrequent with dynamic nature. Entrance or displacement of these infrequent water molecules at GMP/IMP sites may occur due to forward and backward movement of reference residues involving ligands. Four water molecules of hGMPR-I and nine water molecules of hGMPR-II are observed in repetitive transitions from GMP to IMP pathway, which indicates discrimination between two isoforms of hGMPRs. Water molecules in cancerous protein are more dynamic and unstable compared to normal protein. These water molecules execute rare dynamical events at GMP binding site and could assist in detailed understanding of conformational transitions that influence the hGMPR's biological functionality. The present study should be of interest to the experimental community engaged in leukemia research and drug discovery for CML cancer.  相似文献   

6.
Rusticyanin (RCy) mediated transfer of electron to Cytochrome C(4) (Cytc(4)) from the extracellular Fe(+2) ion is primarily involved in the Thiobacillus ferrooxidans induced bio-leaching of pyrite ore and also in the metabolism of this acidophilic bacteria. The modeling studies have revealed the two possible mode of RCy-Cytc(4) complexation involving nearly the same stabilization energy approximately -15 x 10(3) kJ/mol, one through N-terminal Asp 15 and another -C terminal Glu 121 of Cytc(4) with the Cu-bonded His 143 of RCy. The Asp 15:His 143 associated complex (DH) of Cytc(4)-RCy was stabilized by the intermolecular H-bonds of the carboxyl oxygen atoms O(delta1) and O(delta2) of Asp 15 with the Nepsilon-atom of His 143 and O(b) atoms of Ala 8 and Asp 5 (of Cytc(4)) with the Thr 146 and Phe 51 (of RCy). But the other Glu 121:His 143 associated complex (EH) of Cytc(4)-RCy was stabilized by the H-bonding interaction of the oxygen atoms O(epsilon1) and O(epsilon2) of Glu 121 with the Nepsilon and Ogamma atoms of His 143 and Thr 146 of RCy. The six water molecules were present in the binding region of the two proteins in the energy minimized autosolvated DH and EH-complexes. The MD studies also revealed the presence of six interacting water molecules at the binding region between the two proteins in both the complexes. Several residues Gly 82 and 84, His 143 (RCy) were participated through the water mediated (W 389, W 430, W 413, W 431, W 373, and W 478) interaction with the Asp 15, Ile 82, and 62, Tyr 63 (Cytc(4)) in DH complex, whereas in EH complex the Phe 51, Asn 80, Tyr 146 (RCy) residues were observed to interact with Asn 108, Met 120, Glu 121 (of Cytc(4)) through the water molecules W 507, W 445, W 401, W 446, and W 440. The direct water mediated (W 478) interaction of His 143 (RCy) to Asp 15 (of Cytc(4)) was observed only in the DH complex but not in EH. These direct and water mediated H-bonding between the two respective proteins and the binding free energy with higher interacting buried surface area of the DH complex compare to other EH complex have indicated an alternative possibility of the electron transfer route through the interaction of His 143 of RCy and the N-terminal Asp 15 of Cytc(4).  相似文献   

7.
Human matrix metalloproteinase-8 (hMMP-8) plays a important role in the progression of colorectal cancer, metastasis, multiple sclerosis and rheumetoid arthritis. Extensive MD-simulation of the PDB and solvated structures of hMMP-8 has revealed the presence of few conserved water molecules around the catalytic and structural zinc (ZnC and ZnS) ions. The coordination of two conserved water molecules (W and WS) to ZnS and the H-bonding interaction of WS to S151 have indicated the plausible involvement of that metal ion in the catalytic process. Beside this the coupling of ZnC and ZnS metal ions (ZnC – WH (W1)…..W2 ….H162 - ZnS) through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. This unique recognition of both the Zn+2 ions in the enzyme through conserved water molecules may be implemented/ exploited for the design of antiproteolytic agent using water mimic drug design protocol.  相似文献   

8.
The high resolution crystallographic structure of MCTI-II complexed with beta trypsin (PDB entry 1MCT) was used to model the corresponding structures of the six inhibitor peptides belonging to Cucurbitaceae family (MCTI-I, LA-1, LA-2, CMTI-I, CMTI-III, CMTI-IV). Two model inhibitors, LA-1 and LA-2 were refined by molecular dynamics to estimate the average solution structure. The difference accessible surface area (DASA) study of the inhibitors with and without trypsin revealed the Arginine and other residues of the inhibitors which bind to trypsin. The hydration dynamics study of LA1 and LA2 also confirm the suitability of water molecules at the active Arg site. Moreover, the presence of a unique 3D-structural motif comprises with the four CPRI residues from the amino terminal is thought to be conserved in all the six studied inhibitors, which seems essential for the directional fixation for proper complexation of the Arg (5) residue towards the trypsin S1-binding pocket. The role of the disulphide linkage in the geometrical stabilization of CPRI (Cysteine, Proline, Arginine, Isoleucine) motif has also been envisaged from the comparative higher intra molecular Cys (3) -Cys (20) disulphide dihedral energies.  相似文献   

9.
The molecular structure of [Cu(sulfadimet)(2)].SO(CH(3))(2) (sulfadimet=sulfadimethoxine=4-p-aminobenzenesulfonamido-2,6-dimethoxypyrimidine) was determined by single crystal X-ray diffractometry. It crystallizes in the monoclinic space group P2(1)/c with Z=4. The Cu(II) cation is in a distorted CuN(5) square pyramidal coordination, involving four sulfadimethoxine molecules, one of them acting as a bidentate ligand. The infrared spectrum is briefly discussed on the basis of the structural peculiarities of the complex.  相似文献   

10.
The crystal structure of 6-azathymine hemihydrate (6AzTH) exhibits a novel intercalation of water molecules interposed half-way between the modified bases 6.3 to 6.7 A apart. The crystal contains four molecules of 6-azathymine (6AzT) and two water molecules as the independent repeating unit. These two water molecules together with the four bases form two separate water sandwiches. In the crystal structure these sandwiches form two sets of local clusters. The anhydrous crystalline form of 6AzT, on the other hand, is stabilized by base stacking interactions. Both the water molecules in 6AzTH that are involved in sandwich formation have trigonal coordination around them. A reexamination of the crystal structure of 5-amino-2-thiocytosine (5A2TC) revealed that one of the water molecules in this structure also forms a water sandwich and has trigonal coordination whereas the other water molecule with tetrahedral coordination does not form a sandwich. The environment and the characteristics of the intercalated water molecule in these structures suggest a possible role for such water intercalations in the dynamics of DNA. Crystals of 6AzTH are monoclinic, space group P21/n, with unit cell parameters a = 8.861 (1), b = 13.177 (3), c = 20.662 (2) A, beta = 93.35 (1) degrees, and Z = 16. From diffractometer data (2503 reflections, greater than or equal to 3 sigma), the crystal structure was solved and refined to an R of 0.056.  相似文献   

11.
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in GMP biosynthesis pathway. Type I hIMPDH is expressed at lower levels in all cells, whereas type II is especially observed in acute myelogenous leukemia, chronic myelogenous leukemia cancer cells, and 10?ns simulation of the IMP–NAD+ complex structures (PDB ID. 1B3O and 1JCN) have revealed the presence of a few conserved hydrophilic centers near carboxamide group of NAD+. Three conserved water molecules (W1, W, and W1′) in di-nucleotide binding pocket of enzyme have played a significant role in the recognition of carboxamide group (of NAD+) to D274 and H93 residues. Based on H-bonding interaction of conserved hydrophilic (water molecular) centers within IMP–NAD+-enzyme complexes and their recognition to NAD+, some covalent modification at carboxamide group of di-nucleotide (NAD+) has been made by substituting the –CONH2group by –CONHNH2 (carboxyl hydrazide group) using water mimic inhibitor design protocol. The modeled structure of modified ligand may, though, be useful for the development of antileukemic agent or it could be act as better inhibitor for hIMPDH-II.  相似文献   

12.
The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.  相似文献   

13.
Cysteine protease is ubiquitous in nature. Excess activity of this enzyme causes intercellular proteolysis, muscle tissue degradation, etc. The role of water-mediated interactions in the stabilization of catalytically significant Asp158 and His159 was investigated by performing molecular dynamics simulation studies of 16 three-dimensional structures of plant thiol proteases. In the simulated structures, the hydrophilic W(1), W(2) and WD(1) centers form hydrogen bonds with the OD1 atom of Asp158 and the ND1 atom of His159. In the solvated structures, another water molecule, W(E), forms a hydrogen bond with the NE2 atom of His159. In the absence of the water molecule W(E), Trp177 (NE1) and Gln19 (NE2) directly interact with the NE2 atom of His159. All these hydrophilic centers (the locations of W(1), W(2), WD(1), and W(E)) are conserved, and they play a critical role in the stabilization of His-Asp complexes. In the water dynamics of solvated structures, the water molecules W(1) and W(2) form a water...water hydrogen-bonded network with a few other water molecules. A few dynamical conformations or transition states involving direct (His159 ND1...Asp158 OD1) and water-mediated (His159 ND1...W(2)...Asp158 OD1) hydrogen-bonded complexes are envisaged from these studies.  相似文献   

14.
The metabolism of Thiobacillus ferrooxidans involves electron transfer from the Fe+2 ions in the extracellular environment to the terminal oxygen in the bacterial cytoplasm through a series of periplasmic proteins like Rusticyanin (RCy), Cytochrome (Cyt c4), and Cytochrome oxidase (CcO). The energy minimization and MD studies reveal the stabilization of the three redox proteins in their ternary complex through the direct and water mediated H-bonds and electrostatic interaction. The surface exposed polar residues of the three proteins, i.e., RCy (His 143, Thr 146, Lys 81, Glu 20), Cyt c4 (Asp 5, 15, 52, Ser 14, Glu 61), and CcO (Asp 135, Glu 126, 140, 142, Thr 177) formed the intermolecular hydrogen bonds and stabilized the ternary complex. The oxygen (Oepsilon1) of Glu 126, 140, and 142 on subunit II of the CcO interact to the exposed side-chain and Ob atoms of the Asp 52 of Cyt c4 and Glu 20 and Leu 12 of RCy. The Asp 135 of subunit II also forms H-bond with the Nepsilon atom of Lys 81 of RCy. The Oepsilon1 of Glu 61 of Cyt c4 is also H-bonded to Ogamma atom of Thr 177 of CcO. Solvation followed by MD studies of the ternary protein complex revealed the presence of seven water molecules in the interfacial region of the interacting proteins. Three of the seven water molecules (W 79, W 437, and W 606) bridged the three proteins by forming the hydrogen bonded network (with the distances approximately 2.10-2.95 A) between the Lys 81 (RCy), Glu 61 (Cyt c4), and Asp 135 (CcO). Another water molecule W 603 was H-bonded to Tyr 122 (CcO) and interconnected the Lys 81 (RCy) and Asp 135 (CcO) through the water molecules W 606 and W 437. The other two water molecules (W 21 and W 455) bridged the RCy to Cyt c4 through H-bonds, whereas the remaining W 76 interconnected the His 53 (Cytc4) to Glu 126 (CcO) with distances approximately 2.95-3.0 A.  相似文献   

15.
The complexation of cyclohexanespiro-5-(2,4-dithiohydantoin), L, with copper and nickel was studied by means of experimental and theoretical methods. The Cu(I) and Ni(II) complexes were synthesized and characterized using 13C CPMAS NMR, IR and FAB-MS. Reduction of Cu(II) ions and the formation of Cu(I) complexes with dithiohydantoin was proved. Various coordination modes were investigated on the basis of calculated (DFT-GIAO) shielding constants of the free ligand and model structures of the complexes. General trends in the changes of spectroscopic parameters (NMR chemical shifts, vibrational modes) upon different types of coordination were outlined. Dimeric structures for the Cu(I) and Ni(II) complexes were proposed in which the ligands were coordinated in N3^S4- and N3^S2-bridging ways, respectively, acting as monoanions. The results demonstrate that the combined experimental (13C CPMAS NMR, IR) and theoretical (DFT) approach can be used to characterize the molecular structure of solid complexes for which crystallographic data are not available.  相似文献   

16.
The molecular structure of the title complex, [Cu(C6H14N4O2)2(H2O)]CO3.H(2)O, was determined by single crystal X-ray diffractometry. It crystallizes in the monoclinic space group P2(1), with Z = 2. The Cu(II) ion is in a square pyramidal environment, trans coordinated at the basis by two argininate groups acting as bidentate ligands through their amino nitrogen and carboxylate oxygen atoms. The coordination around copper is completed by a water molecule at the pyramid apex. The infrared, Raman and electronic spectra are briefly discussed on the basis of the structural peculiarities of the complex.  相似文献   

17.
Human Ceruloplasmin belongs to the family of multi-copper oxidases and it is involved in different physiological processes, copper ion transport, iron metabolism, iron homeostasis, and biogenic amine metabolism. MD-simulation studies have indicated the higher hydrophilic susceptibility of the trinuclear copper cluster in native CP compared to its oxygen bound form. The copper (T2/T3) atom Cu3047 of the cluster, which is close to T1 copper center Cu3052 (~13 Å) has a higher affinity for water molecules compared to other copper centers. The water molecules of W3, W4, W5, W9, and W12 conserved water sites are coordinated to Cu3047, where W3, W9, and W12 centers are found to play some crucial role in the stabilization of native trinuclear copper cluster. The hydrogen bonding interaction of Asp169, Glu112, Asp995, and Glu1032 residues with the copper-bound conserved water molecules (W3, W4, W5, W10, and W11) in native CP is observed to be unique. The conformational flexibility of Asp169 and Glu112 and their association with the copper-bound water molecules, but the absence of such interaction in O2-bound simulated structure of the enzyme is indicating some plausible rational on the role of these acidic residues in the gating of O2 molecule in the native trinuclear Cu cluster of CP. The simulation results may shade some new light on the biochemistry/chemistry of CP, specially on the hydration dynamics of the trinuclear copper cluster.  相似文献   

18.
Yang L  Xu Y  Gao X  Zhang S  Wu J 《Carbohydrate research》2004,339(10):1679-1687
Erythritol was chosen to study the interactions between metal ions and carbohydrates. FTIR spectroscopy results indicate that a EuCl3-erythritol complex different from a previously reported one was obtained. The crystal structure of EuCl3-erythritol complex, 2EuCl3.2C4H10O4.7H2O, Mr=443.49, a=13.846(3) A , b=7.4983(15) A, c=14.140(3) A, beta=116.39(3) degrees, V=1315.1(5) A(3), Z=4, mu=5.394 mm(-1) and R=0.0395 for 2965 observed reflections and 143 parameters, was determined. Characteristic of this complex is the presence of binuclear europium ions with different coordination structures. One Eu3+ ion is nine-coordinated, with five Eu-O bonds from water molecules, and four from hydroxyl groups of two erythritol molecules and another Eu3+ is eight-coordinated with two water molecules, two chloride ions, and four hydroxyl groups from two erythritol molecules. Erythritol provides two hydroxyl groups to one lanthanide ion and the other two to another rare earth ion. The OH, CO stretching and other vibrations are shifted in the IR spectra of the complexes and the results are consistent with the crystal structure.  相似文献   

19.
20.
Lu Y  Deng G  Miao F  Li Z 《Carbohydrate research》2003,338(24):2913-2919
The single-crystal structure of neodymium chloride-ribopyranose pentahydrate, NdCl3.C5H10O5.5H2O was determined to have Mr=490.80, a=9.138(11), b=8.830(10), c=9.811(11) A, beta=94.087(18) degrees, V=789.7(16) A3, P2(1), Z=2, mu=0.71073 A and R=0.0198 for 2075 observed reflections. The ligand of the title complex was observed in a disordered state and two molecular configurations of NdCl3.C5H10O5.5H2O were found in the single crystal as a pair of isomers. Both ligand moieties of the two molecules are ribopyranose forms, providing three hydroxyl groups in ax-eq-ax orientation for coordination. One ligand of the pair of isomers is beta-D-ribopyranose in the 1C4 conformation, and the other is alpha-D-ribopyranose in the 4C1 conformation. The Nd3+ ion is nine-coordinated with five Nd-O bonds from water molecules, three Nd-O bonds from hydroxyl groups of the ribopyranose and one Nd-Cl bond from chloride ion. The hydroxyl groups, water molecules, chloride ions form an extensive hydrogen-bond network. The IR spectral C-C,O-H,C-O and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accordance with those of X-ray spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号