首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adenosine 3′,5′-cyclic monophosphate level of chick embryonic retina changes during the course of development. In retinas from 6- to 15-day-old embryos the cAMP level is approximately 7 pmol/mg protein. A sharp 3-fold increase is observed between the 16th and 18th embronic day and remains constant thereafter. A dopamine-dependent increase in cAMP of the chick retina is already present in 7-day-old embryos, and by the 8th embryonic day maximal response is attained. Glutamate promotes a 2-fold stimulation. Carbachol, γ-aminobutyric acid and glycine do not cause any significant change in the level of cAMP of the embryonic tissue. Guanosine 3′,5′-cyclic monophosphate also accumulates during development. Its concentration is approx 0.5 pmol/mg protein from the 8th to the 14th embryonic day, then increases gradually until the 19th day of development when the level observed is approx 14 pmol/mg protein.  相似文献   

2.
The effects of direct and indirect activation of adenylyl cyclase on the production of intracellular and extracellular cAMP and cGMP by 13- to 16-day-old cattle embryos were determined. Embryos were incubated for 2 h in a Krebs Ringer bicarbonate medium containing the phosphodiesterase inhibitor isobutyl-methylxanthine, to which stimulating agents forskolin (100 mumol l-1), cholera toxin (2 micrograms ml-1), or both were added. Total (intra- and extracellular) basal cAMP and cGMP concentrations ranged from 6.65 +/- 0.895 to 3.4 +/- 0.708 fmol microgram-1 protein in 13-day-old embryos and from 4.05 +/- 1.151 to 0.19 +/- 0.041 fmol microgram-1 protein in 16-day-old embryos. Forskolin induced an increase (P < 0.001) in cAMP that ranged from 5.4-fold on day 13 to 2.7-fold on day 16, whereas cholera toxin induced an increase (P < 0.001) that ranged from 30-fold at day 13 to 21-fold at day 16, similar to the effect of forskolin and cholera toxin combined. Individually, forskolin and cholera toxin had no effect on cGMP concentrations, but together they induced an increase (P < 0.05). cAMP (P < 0.01) and cGMP (P < 0.001) concentrations decreased with embryo age from day 13 to day 16 for all treatments; the decrease was greater for cGMP than cAMP (5-24-fold versus 1.6-3.3-fold, respectively). It is concluded that inducible adenylyl cyclase is present in 13- to 16-day-old cattle embryos and that the embryos secrete cAMP and cGMP into the incubation medium. In addition, basal and inducible concentrations of cAMP and cGMP decrease with embryo age from day 13 to day 16. These observations indicate that cAMP and cGMP may have a role in the rapid embryonic cell proliferation that occurs at this time or in signalling to the endometrium.  相似文献   

3.
The cyclic AMP level of 17-day-old chick embryo retina increased from 20 to 331 pmol/mg protein when the tissue was incubated for 20 min in the presence of 4-(3-butoxy-4-methoxybenzyl-2-imidozolinone) (RO 20-1724). The addition of 0.5 mM-3-isobutyl-1-methylxanthine (IBMX) or 0.5 units/ml of adenosine deaminase (EC 3.5.4.4) to the medium reduced the increase of cyclic AMP content from 20 to 100 pmol/mg protein. Dipyridamole did not interfere with the rise of the retinal cyclic AMP level observed with RO 20-1724. The EC50 of 6-amino-2-chloropurine riboside (2-chloroadenosine)-elicited accumulation of cyclic AMP of retinas incubated in the presence of RO 20-1724 plus adenosine deaminase was approximately 1 microM. When retina incubation was carried out in the presence of 0.5 mM-IBMX, the 2-chloroadenosine dose-response curve was shifted to the right two orders of magnitude. Maximal stimulation of the cyclic AMP level of 17-day-old chick embryo retina incubated in the presence of 0.5 mM-IBMX was observed at 1 mM-adenosine concentration. This effect was not blocked by dopamine antagonists. Guanosine and adenine did not affect the retinal cyclic AMP level. AMP and ATP had a slight stimulatory effect. Adenosine response of embryonic retina increased sharply from the 14th to the 17th embryonic day. A similar, but not identical adenosine effect was observed in cultured retina cells.  相似文献   

4.
Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.  相似文献   

5.
We tested the hypothesis that the negative functional effects of cyclic GMP (cGMP) would be greater after increasing cyclic AMP (cAMP), because of the action of cGMP-affected cAMP phosphodiesterases in cardiac myocytes and that this effect would be altered in left ventricular hypertrophy (LVH) produced by aortic valve plication. Myocyte shortening data were collected using a video edge detector, and O2 consumption was measured by O2 electrodes during stimulation (5 ms, 1 Hz, in 2 mM Ca2+) from control (n = 7) and LVH (n = 7) dog ventricular myocytes. cAMP and cGMP were determined by a competitive binding assay. cAMP was increased by forskolin and milrinone (10(-6) M). cGMP was increased with zaprinast and decreased by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxilin-1-one (ODQ) both at 10(-6) and 10(-4) M, with and without forskolin or forskolin + milrinone. Zaprinast significantly decreased percent shortening in control (9 +/- 1 to 7 +/- 1%) and LVH (10 +/- 1 to 7 +/- 1%) myocytes. It increased cGMP in control (36 +/- 5 to 52 +/- 7 fmol/10(5) myocytes) and from the significantly higher baseline value in LVH (71 +/- 12 to 104 +/- 18 fmol/10(5) myocytes). ODQ increased myocyte function and decreased cGMP levels in control and LVH myocytes. Forskolin + milrinone increased cAMP levels in control (6 +/- 1 to 15 +/- 2 pmol/10(5) myocytes) and LVH (8 +/- 1 to 18 +/- 2 pmol/10(5) myocytes) myocytes, as did forskolin alone. They also significantly increased percent shortening. There were significant negative functional effects of zaprinast after forskolin + milrinone in control (15 +/- 2 to 9 +/- 1%), which were greater than zaprinast alone, and LVH (12 +/- 1 to 9 +/- 1%). This was associated with an increase in cGMP and a reduction in the increased cAMP induced by forskolin or milrinone. ODQ did not further increase function after forskolin or milrinone in control myocytes, despite lowering cGMP. However, it prevented the forskolin and milrinone induced increase in cAMP. In hypertrophy, ODQ lowered cGMP and increased function after forskolin. ODQ did not affect cAMP after forskolin and milrinone in LVH. Thus, the level of cGMP was inversely correlated with myocyte function. When cAMP levels were elevated, cGMP was still inversely correlated with myocyte function. This was, in part, related to alterations in cAMP. The interaction between cGMP and cAMP was altered in LVH myocytes.  相似文献   

6.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

7.
In the present study the level of cAMP was measured during in vitro chondrogenesis of wing mesenchyme of stage 24 chick embryos and was found to increase significantly from 6.3 pmol/mg protein at the end of the first day of culture to 9.7 pmol/mg protein on the second day, when chondrogenic expression is first detected by the appearance of an Alcian blue staining extracellular matrix. Nonchondrogenic cultures derived from wings of stage 19 embryos had a lower level of cAMP (4.4 +/- 0.07 pmol/mg protein). The level of cAMP in intact wings was 4.5 +/- 0.4 pmol/mg protein and did not change between stages 19 through 25. The correlatin between increased levels of cAMP and the onset of chondrogenesis is consistent with a role of cAMP in the expression of differentiated functions in chondrocytes, as well as in some other cell types.  相似文献   

8.
Human multidrug resistance protein 4 (MRP4) has recently been determined to confer resistance to the antiviral purine analog 9-(2-phosphonylmethoxyethyl)adenine and methotrexate. However, neither its substrate selectivity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP4 using membrane vesicles prepared from insect cells infected with MRP4 baculovirus. It is shown that expression of MRP4 is specifically associated with the MgATP-dependent transport of cGMP, cAMP, and estradiol 17-beta-D-glucuronide (E(2)17 beta G). cGMP, cAMP, and E(2)17 beta G are transported with K(m) and V(max) values of 9.7 +/- 2.3 microm and 2.0 +/- 0.3 pmol/mg/min, 44.5 +/- 5.8 microm and 4.1 +/- 0.4 pmol/mg/min, and 30.3 +/- 6.2 microm and 102 +/- 16 pmol/mg/min, respectively. Consistent with its ability to transport cyclic nucleotides, it is demonstrated that the MRP4 drug resistance profile extends to 6-mercaptopurine and 6-thioguanine, two anticancer purine analogs that are converted in the cell to nucleotide analogs. On the basis of its capacity to transport cyclic nucleotides and E(2)17 beta G, it is concluded that MRP4 may influence diverse cellular processes regulated by cAMP and cGMP and that its substrate range is distinct from that of any other characterized MRP family member.  相似文献   

9.
Whole-cell voltage-clamp experiments were performed to examine the underlying currents flowing during the pacemaker potential of spontaneously-beating embryonic chick ventricles. The holding potential was -30 mV. Long-duration (3 s) hyperpolarizing pulses were applied to -40 to -120 mV, in increments of 10 mV. A marked hyperpolarization-activated inward current (If) was produced. In cells from 3-day-old hearts, the threshold potential for the inward current was -50 to -60 mV. In 17-day-old cells, there was almost no If current. At -120 mV, the inward current was -93.8 +/- 6.3 pA (n = 5) in 3-day-old cells and -15.7 +/- 2.8 pA (n = 5) in 17-day-old cells. The average capacitances were 10.1 +/- 2.0 pF (n = 17) in 3-day-old cells, and 6.9 +/- 1.2 pF (n = 14) in 17-day-old cells. The reduction of If paralleled the decrease in spontaneous activity. In the presence of 3 mM CsCl, the inward current was blocked completely, and the tail current was reduced. In addition, 3 mM CsCl depressed the spontaneous action potentials and had a negative chronotropic effect. These results indicate that the hyperpolarization-activated inward If current exists in young embryonic chick heart cells, and decreases during development. This If current may contribute somewhat to the electrogenesis of the pacemaker potential.  相似文献   

10.
We identified abnormalities in the vascular beta-adrenergic receptor (beta-AR) signaling pathway in heart failure after myocardial infarction (MI). To examine these abnormalities, we measured beta-AR-mediated hemodynamics, vascular reactivity, and the vascular beta-AR molecular signaling components in rats with heart failure after MI. Six weeks after MI, these rats had an increased left ventricular (LV) end-diastolic pressure, decreased LV systolic pressure, and decreased rate of LV pressure change (dP/dt). LV dP/dt responses to isoproterenol were shifted downward, although the responses for systemic vascular resistance were shifted upward in heart failure rats (P < 0.05). Isoproterenol- and IBMX-induced vasorelaxations were blunted in heart failure rats (P < 0.05) with no change in the forskolin-mediated vasorelaxation. These changes were associated with the following alterations in beta-AR signaling (P < 0.05): decreases in beta-AR density (aorta: 58.7 +/- 6.0 vs. 35.7 +/- 1.9 fmol/mg membrane protein; carotid: 29.6 +/- 5.6 vs. 18.0 +/- 3.9 fmol/mg membrane protein, n = 5), increases in G protein-coupled receptor kinase activity levels (relative phosphorimage counts of 191 +/- 39 vs. 259 +/- 26 in the aorta and 115 +/- 30 vs. 202 +/- 7 in the carotid artery, n = 5), and decreases in cGMP and cAMP in the carotid artery (0.85 +/- 0.10 vs. 0.31 +/- 0.06 pmol/mg protein and 2.3 +/- 0.3 vs. 1.2 +/- 0.1 pmol/mg protein, n = 5) with no change in Galpha(s) or Galpha(i )in the aorta. Thus in heart failure there are abnormalities in the vascular beta-AR system that are similar to those seen in the myocardium. This suggests a common neurohormonal mechanism and raises the possibility that treatment in heart failure focused on the myocardium may also affect the vasculature.  相似文献   

11.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

12.
Effects of a novel slow channel activator, Bay K-8644 (Bay K), were studied on slow action potential (APs) in young and old embryonic chick hearts, and on its antagonism of the effects of diacetyl monoxime (DAM). The slow APs of young hearts are mediated by slow Na+ channels, whereas those of old hearts are mediated by slow Ca2+ channels. In slow APs of old (13-18 days old) embryonic chick hearts superfused with a high (22 mM) K+ solution, Bay K (10-6 M) gradually increased the amplitude, maximum rate of rise (Vmax), and duration of the slow APs. The actions of Bay K persisted for a long time (greater than 30 min) after washout of the drug. DAM (10 mM) depressed the Vmax, duration and amplitude of the slow APs. Some of the changes in slow AP parameters produced by DAM, e.g., Vmax decrease, were antagonized by the addition of Bay K (10(-6) M). In 3-day-old embryonic chick hearts. Bay K potentiated the slow APs and DAM depressed them; Bay K antagonized these effects of DAM. Thus, the actions of Bay K and DAM are likely to be produced, respectively, via the activation and depression of slow Ca2+ channels in old embryonic chick hearts. In addition, the drugs seem to influence slow Na+ channels found in young embryonic chick hearts.  相似文献   

13.
We examined basal adenosine 3',5'-cyclic monophosphate (cAMP) levels, isoproterenol (ISO)-stimulated cAMP responses, basal cAMP, and guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase (PDE) activities and protein-kinase (PK) activities in trachealis muscle from five Basenji-greyhound (BG) and four greyhound dogs to determine whether the inverse relationship between in vivo and in vitro airway responsiveness could be due to altered cyclic nucleotide metabolism. Basal cAMP levels were not significantly different (PNS) in muscle from BG (11.6 +/- 0.53 pmol/mg protein) and greyhound dogs (10.30 +/- 1.60 pmol/mg protein). The cAMP responses to stimulation with ISO were enhanced in BG compared with greyhound dogs. The low Michaelis constant (1) for Km-cAMP PDE activity (Km = 0.63 microM) was significantly less (P less than 0.005) in BG dogs (1.54 +/- 0.28 pmol.min-1.mg protein-1) than greyhounds (11.76 +/- 2.48). Endogenously active PK activity was significantly greater (P less than 0.005) in BG (54.74 +/- 5.39 pmol.min-1.mg protein-1) than in greyhound dogs (15.50 +/0 2.20). Increases in PK activity with 5 microM cAMP added were not significantly different between BG (14.79 +/- 6.00) and greyhound dogs (7.04 +/- 2.14). Approximately 90% of both endogenous PK activity and cAMP-activated PK activity in BG and greyhound dogs was inhibited by a cAMP-dependent PK inhibitor (PKI'). These data suggest that decreased cyclic nucleotide degradation due to decreased cyclic nucleotide PDE activity with increased PK could account for the in vitro hyporesponsiveness of airway smooth muscle in BG dogs as a protective adaptive mechanism.  相似文献   

14.
1. We determined the number of beta-receptors in the whole spinal cord of the adult rat and in the cervical, thoracal, and lumbal/sacral parts. 2. The undivided spinal cord contains 47 +/- 10 fmol/mg beta-receptors (KD = 2066 +/- 982 pmol/liter), and the cervical part of the spinal cord contains 53 +/- 8 fmol/mg protein (KD = 3224 +/- 1775 pmol/liter). The thoracal part shows 40 +/- 1 fmol/mg protein (KD = 3229 +/- 104 pmol/liter), and the lumbal/sacral spinal cord contains 48 +/- 8 fmol/mg protein (KD = 3610 +/- 1610 pmol/liter). 3. Competitive inhibition studies with l-practolol, dl-atenolol, and ICI 118,551 were performed and we calculated by a computer program in the whole spinal cord the following ratio of beta-receptor subtypes: 80 +/- 5% Beta 1-receptors and 20 +/- 5% beta 2-receptors. 4. The basal and (-)-isoproterenol- and NaF-stimulated activity of adenylate cyclase was highest in the cervical part of the spinal cord and equally distributed between the thoracal and the lumbal/sacral parts. 5. The whole synaptosomal protein of the cervical part of the spinal cord contained 132 +/- 20 fmol, the thoracal part 117 +/- 3 fmol, and the lumbal/sacral part 133 +/- 22 fmol.  相似文献   

15.
Adenosine (Ado), a smooth muscle vasodilator and modulator of cardiac function, is taken up by many cell types via a saturable transporter, blockable by dipyridamole. To quantitate the influences of endothelial cells in governing the blood-tissue exchange of Ado and its concentration in the interstitial fluid, one must define the permeability-surface area products (PS) for Ado via passive transport through interendothelial gaps [PS(g)(Ado)] and across the endothelial cell luminal membrane (PS(ecl)) in their normal in vivo setting. With the use of the multiple-indicator dilution (MID) technique in Krebs-Ringer perfused, isolated guinea pig hearts (preserving endothelial myocyte geometry) and by separating Ado metabolites by HPLC, we found permeability-surface area products for an extracellular solute, sucrose, via passive transport through interendothelial gaps [PS(g)(Suc)] to be 1.9 +/- 0.6 ml. g(-1). min(-1) (n = 16 MID curves in 4 hearts) and took PS(g)(Ado) to be 1. 2 times PS(g)(Suc). MID curves were obtained with background nontracer Ado concentrations up to 800 micrometer, partially saturating the transporter and reducing its effective PS(ecl) for Ado. The estimated maximum value for PS(ecl) in the absence of background adenosine was 1.1 +/- 0.1 ml. g(-1). min(-1) [maximum rate of transporter conformational change to move the substrate from one side of the membrane to the other (maximal velocity; V(max)) times surface area of 125 +/- 11 nmol. g(-1). min(-1)], and the Michaelis-Menten constant (K(m)) was 114 +/- 12 microM, where +/- indicates 95% confidence limits. Physiologically, only high Ado release with hypoxia or ischemia will partially saturate the transporter.  相似文献   

16.
The effect of C-type natriuretic peptide (CNP), a novel member of the natriuretic peptide family, on cyclic GMP (cGMP) generation was studied in primary cultures of mouse astrocytes. CNP stimulated cGMP production by mouse astrocytes in a dose-dependent fashion, with an EC50 of 32 nM and a maximal stimulatory concentration of greater than 1 microM, which induced a rise of cGMP level from a baseline of 1.0 +/- 0.1 pmol/mg of protein to 196.2 +/- 22.0 pmol/mg of protein. Compared with our previously reported atrial and brain natriuretic peptide-induced cGMP responses, CNP had a lower EC50 and was 10-20 times more efficacious in its maximal effect on cGMP stimulation. These data lend support to the concept of a significant role of CNP in neuromodulation/neurotransmission.  相似文献   

17.
Cyclic nucleotide modulation of electrolyte transport across intestinal brushborder membranes is initiated by binding of cGMP and cAMP to high-affinity receptors at the interior of the microvilli. Previously these receptors have been identified by photoaffinity-labelling techniques as regulatory domains of cGMP- and cAMP-dependent protein kinases. In the present study, the receptor concentration in isolated brushborder membrane vesicles and their fractional saturation in absorptive and secretory states of the tissue were estimated. In microvillous membrane vesicles isolated from rat small intestine in the absorptive state, about 10% of the total number of cGMP receptors (25.5 pmol/mg protein) and 40% of all cAMP receptors (28.7 pmol/mg protein) were occupied by endogenous cyclic nucleotides. Luminal exposure of the intestinal segments in vivo to heat-stable Escherichia coli toxin for 3-5 min increased the occupancy of cGMP receptors by about 5-fold without affecting receptor-bound cAMP levels. In contrast, incubation with cholera toxin for 2 h increased the fractional saturation solely of cAMP receptors by 2-fold. Addition of heat-stable E. coli toxin to cholera toxin-pretreated segments, again raising the cGMP levels by 5-fold, did not reduce the amount of receptor-bound cAMP. This finding argues against the concept that increased levels of cAMP during cholera would mimick cGMP effects on ion transport by low-affinity binding to microvillar cGMP receptors. This analysis of local changes in cyclic nucleotide levels at the microvillous level might help to explore the mechanism of action of other secretagogues or antidiarrhoeal agents and to delineate a possible compartmentation of cGMP and cAMP pools within the intestinal mucosa responding differently to external signals.  相似文献   

18.
Parasympathetic and sympathetic innervation of the embryonic chick heart proceed non-coordinately. beta-Adrenergic agonists mediate an increase in beating rate in embryonic chick heart prior to ingrowth of the vagus nerve (Culver, N. G., and Fishman, D. A. (1977) Am. J. Physiol. 232, R116-R123) while muscarinic agonists exert relatively little effect on beating rate in hearts 2-4 days in ovo (Papanno, A. J. (1979) Pharmacol. Rev. 29, 3-33). Studies of developmental changes in the ability of muscarinic agonists to inhibit adenylate cyclase activity and their relationship to the development of a physiologic response of the embryonic chick heart to muscarinic stimulation have been inconclusive. In the current studies the ability of isoproterenol to stimulate adenylate cyclase activity did not change during development. Maximum stimulation above basal was 760 pmol of cAMP/10 min/mg of proterin with an IC50 of 1.5 X 10(-6) M for isoproterenol in homogenates of hearts 2 1/2, 3 1/2, and 10 days in ovo and 3 days posthatching. However, inhibition of isoproterenol-stimulated adenylate cyclase activity by carbamylcholine increased from 7.6% with a IC50 for carbamylcholine of 16 +/- 5.0 microM at day 2 1/2 in ovo to 29% with an IC50 of 0.4 +/- 0.1 microM at day 10 in ovo and to 43% with a IC50 of 0.6 +/- 0.1 microM at 3 days posthatching. Since previous data had demonstrated the presence of muscarinic receptors as early as 2 1/2 days in ovo (Galper, J. B., Klein, W., and Catterall, W. A. (1977) J. Biol. Chem. 252, 8692-8699), studies of developmental changes in guanine nucleotide-coupling proteins were carried out to determine whether early in development muscarinic receptors were uncoupled from a physiologic response. Studies of pertussis toxin-catalyzed ADP-ribosylation of homogenates of embryonic chick heart with [32P]NAD demonstrated the presence of two ADP-ribosylated proteins at 39,000 and 41,000 kDa, respectively. Both ADP-ribosylation and immunoblotting of homogenates with an antibody to the 39-kDa guanine nucleotide-binding protein in bovine brain demonstrated that the 39-kDa alpha protein increased 1.8-fold between days 2 1/2 and 3 1/2 in ovo and another 1.8-fold from day 3 1/2 to 10 in ovo in parallel with the increase in the extent of muscarinic inhibition of adenylate cyclase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Changes in cerebral cytochrome oxidase (COX) activity, nitric oxide (NO)-cyclic GMP (cGMP) pathway and cholinergic muscarinic receptors (MRs) have been reported in rodents acutely exposed to carbon monoxide (CO). These endpoints measurable in lymphocytes may serve as peripheral markers of CO neurotoxicity. The early and delayed effects of repeated and acute in vivo CO inhalation were investigated on COX activity, cGMP formation and MR binding in rat brain and lymphocytes to assess whether each endpoint was similarly affected both centrally and peripherally. Male Wistar rats either inhaled 500 ppm CO, 6 h/day, 5 days/week, 4 weeks (repeated exposure) or 2,400 ppm, 1 h (single exposure). Neither treatment altered brain or lymphocyte COX activity 1 and 7 days post-treatment. Also ineffective were repeated and acute CO treatments towards (3)H-quinuclidinyl benzilate (QNB) binding to MRs in cerebral cortex, hippocampus, striatum, cerebellum (respective controls, mean+/-S.D.: 171 +/- 45, 245 +/- 53, 263 +/- 14 and 77 +/- 7 fmol/mg protein) and lymphocytes (24 +/- 10 fmol/million cells) at the same time points. In lymphocytes control cGMP levels averaged 1.98 +/- 0.99 pmol/mg protein under basal conditions, and 3.94 +/- 0.55 pmol/mg protein after NO-stimulation. One day after chronic treatment cessation, the CO-treated group displayed about a 50% decrease in both basal and NO-stimulated cGMP values, which persisted up to 7 days after, compared to air-exposed rats. Acutely, CO caused a delayed enhancement (+140%) of NO-induced activation of soluble guanylate cyclase. The finding that the NO-cGMP pathway is a target for the delayed effects of CO in peripheral blood cells is in accordance with our data in brain [Hernández-Viadel, M., Castoldi, A.F., Coccini, T., Manzo, L., Erceg, S., Felipo, V., 2004. In vivo exposure to carbon monoxide causes delayed impairment of activation of soluble guanylate cyclase by nitric oxide in rat brain cortex and cerebellum. Journal of Neurochemistry 89, 1,157-1,165], and supports the use of this peripheral endpoint as a biomarker of CO central effects.  相似文献   

20.
Diazepam decreased the rate and amplitude of contraction in isolated embryonic chick hearts in a dose-dependent manner in both the noninnervated hearts obtained from 4-day-old embryos and the innervated hearts from 7-day-old embryos. The concentration of diazepam necessary to reduce the heart rate and contractile amplitude to 50% of the control values was about 1 X 10(-4) M. Concentrations less than 1.0 X 10(-5) M had no detectable depressant effects. Prior administration of atropine did not alter the depression induced by diazepam. Norepinephrine was able to stimulate the amplitude of contraction in the diazepam-depressed heart while atropine was without effect. The vehicle used in the clinical injectable preparation of diazepam had no depressant effects. The mechanism of action of the diazepam-induced depression on the isolated embryonic chick heart may be a direct depression of the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号