首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mathematical model for water and nutrient uptake by plant root systems   总被引:1,自引:0,他引:1  
This article deals with modelling the simultaneous uptake of water and highly buffered nutrient, such as phosphate, by root branching structures from partially saturated soil. We use the simultaneous water and nutrient uptake model to investigate the effect that water movement has on nutrient uptake. With the aid of this model we are also able to show that the previous models by Barber and Tinker and Nye systematically underestimated the phosphate uptake, due to the oversimplified approach in dealing with root branching structure. In this article we show how this discrepancy can be remedied and the root branching structure included in the models of plant nutrient uptake. We will also discuss the differences in the results for continuous and spot fertilization combined with variable rainfall.  相似文献   

3.
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed.  相似文献   

4.
Ferulic acid uptake by soybean root in nutrient culture was investigated by the depletion method at different concentrations, temperatures and pH. Results showed that soybean roots absorbed this compound at greater rates in the concentrations between 0.05-mM and 1.0-mM and it was concentration dependent. Ferulic acid uptake was unaffected at pH 4.5 or 6.0 but reduced at pH 7.0. At pH 6.0, uptake rates decreased significantly with increasing temperature of nutrient solution.  相似文献   

5.
The classical model of plant root nutrient uptake due to Nye. Tinker and Barber is developed and extended. We provide an explicit closed formula for the uptake by a single cylindrical root for all cases of practical interest by solving the absorption-diffusion equation for the soil nutrient concentration asymptotically in the limit of large time. We then use this single root model as a building block to construct a model which allows for root size distribution in a more realistic plant root system, and we include the effects of root branching and growth. The results are compared with previous theoretical and experimental studies.  相似文献   

6.
7.
8.
A simulation model is presented which describes uptake of a growth limiting nutrient from soil by a growing root system. The root surface is supposed to behave like a zero-sink. Uptake of the nutrient is therefore determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter-root competition and time dependent root density are accounted for by assigning to each root a finite cylindrical soil volume that delivers nutrients. The radius of these cylinders declines with increasing root density. Experiments with rape plants grown on quartz sand were used to evaluate the model. Simulated nitrogen uptake agreed well with observed uptake under nitrogen limiting conditions. In case no nitrogen limitation occurred nitrogen uptake was overestimated by the model, probably because the roots did not behave like a zero-sink any more.  相似文献   

9.
A new method for the isolation of root hairs from the model legume, Medicago truncatula, was developed. The procedure involves the propagation of detached roots on agar plates and the collection of root hairs by immersion in liquid nitrogen. Yields of up to 40 micro g of root hair protein were obtained from 50-100 root tips grown for 3 weeks on a single plate. The high purity of the root hair fraction was monitored by western blot analysis using an antibody to the pea epidermis specific protein PsRH2. Sequence analyses revealed that the protein homologous to PsRH2 in M. truncatula, MtRH2, is identical to the root protein MtPR10-1. The MtRH2 protein proved to be a useful endogenous marker to monitor root hair isolation since it is also specifically expressed in the root epidermis.  相似文献   

10.
Summary A root pressure-chamber is described for use with decapitated plant-root systems growing in culture solution or soil to collect sap exudates for nutrient analyses. Preliminary data show rapid nitrate-to-ammonium conversions to occur, and suggest considerable internal cycling of potassium.  相似文献   

11.
Computer simulation of root nutrient uptake has become a very powerfull tool in the analysis of plant and soil characteristics. One of the shortcomings of earlier numerical models is the lack of a proper accounting for age-dependent root parameters. In this article we present an algorithm that not only allows for time-and/or space-varying root growth rates, convective moisture uptake, root density, initial distribution of nutrient, effective diffusion coefficients, and buffer power; but also accounts for time-varying root efflux, root absorption power and maximum nutrient influxive rate.Several elementary numerical examples of NH 4 + , NO 3 , P and K uptake for roots with temporally varying characteristics are presented.Contribution from the Purdue Agric. Exp. Stn., W. Lafayette, IN. Journal Paper No. 9476.  相似文献   

12.
灌溉和施肥措施对农田水文循环具有重要影响,根系吸水是联系植物蒸腾和土壤水分运动的关键水文过程,定量识别灌溉施肥影响下作物根系吸水来源对农业用水优化管理具有重要意义。氘氧稳定同位素(D和18O)是追溯农田水分运移过程的理想天然示踪剂。基于2013—2015年北京市典型农田不同灌溉施肥处理冬小麦水分运移试验,利用D和18O双稳定同位素和MixSIAR贝叶斯混合模型,量化冬小麦主要根系吸水深度及其贡献比例,阐明作物水分来源的季节变化及不同处理间的差异,分析根系吸水与土壤水分分布变化的相互关系。研究结果表明:两季冬小麦返青-拔节、拔节-抽穗、抽穗-灌浆和灌浆-收获期主要根系吸水深度均值分别为0—20 cm(67.0%)、20—70 cm(42.0%)、0—20 cm(38.7%)和20—70 cm(34.9%),但季节变化差异显著,2014季主要吸水深度随作物的生长发育而逐渐增加,2015季则主要集中于浅层土壤(0—70 cm)。返青-抽穗期仅灌水20 mm或施肥105 kg/hm2N促使拔节-抽穗期深层(70—200 cm)土壤水分利用率平均增加29%,而前期充分灌水且大量施肥(≥当地施肥量210 kg hm-2N)时拔节-抽穗期根系吸水深度为土壤表层0—20 cm。在干旱少雨的冬小麦生长季内作物吸水来源与土壤水分消耗变化基本一致。  相似文献   

13.

Background and aims

Soil microbial communities influence nutrient cycling, chemistry and structure of soil, and plant productivity. In turn, agronomic practices such as fertilization and crop rotation alter soil physical and chemical properties and consequently soil microbiomes. Understanding the long-term effects of agronomic practices on soil microbiomes is essential for improving agronomic practices to optimize these microbial communities for agricultural sustainability. We examine the composition and substrate-utilization profiles of microbial communities at the Morrow Plots in Illinois.

Methods

Microbial community composition is assessed with 16S rRNA gene sequencing and subsequent bioinformatic analyses. Community- level substrate utilization is characterized with the BIOLOG EcoPlate.

Results

Fertilizer and rotation treatments significantly affected microbial community structure, while substrate utilization was affected by fertilizer, but not crop-rotation treatments. Differences in relative abundance and occurrence of bacterial taxa found in fertilizer treatments can explain the observed differences in community level substrate utilization.

Conclusion

Long-term fertilization and crop-rotation treatments affect soil microbial community composition and physiology, specifically through chronic nutrient limitation, long-term influx of microbes and organic matter via manure application, as well as through changes in soil chemistry. Relatively greater abundance of Koribacteraceae and Solibacterales taxa in soils might prove useful as indicators of soil degradation.
  相似文献   

14.
P. H. Nye 《Plant and Soil》1966,25(1):81-105
Summary A portion of a single plant root is treated as an absorbing cylindrical sink to which nutrients move by diffusion. Assuming that the rate of uptake of nutrient is proportional to its concentration at the root surface, and that the nutrient, though reacting with the solid, moves only through the soil solution, standard diffusion equations are used to calculate the effect of soil and plant characteristics on the rate of uptake. The treatment is applicable to phosphorus and potassium. Among soil properties uptake should increase directly with the soil solution concentration. It should also increase, but only slowly, with increasing buffering power. It increases with increasing soil moisture. Among plant characteristics, uptake should increase with the root absorbing power until diffusion through the soil becomes limiting. Absorption by unit surface area of root increases as the root radius decreases. A root hair is shown to interfere quickly with the uptake of adjacent hairs. The hairs increase absorption by the root because they can exploit rapidly the soil between the hairs, and they have the effect of extending the effective root surface to their tips.  相似文献   

15.
Diffusion towards the root surface has recently been shown to control the uptake of metal ions from solutions. The uptake flux of phosphorus (P) from solutions often approaches the maximal diffusion flux at low external concentrations, suggesting diffusion-controlled uptake also for P. Potential diffusion limitation in P uptake from nutrient solutions was investigated by measuring P uptake of Brassica napus from solutions using P-loaded Al(2) O(3) nanoparticles as mobile P buffer. At constant, low free phosphate concentration, plant P uptake increased up to eightfold and that of passive, diffusion-based samplers up to 40-fold. This study represents the first experimental evidence of diffusion-limited P uptake by plant roots from nutrient solution. The Michaelis constant of the free phosphate ion obtained in unbuffered solutions (K(m) = 10.4 μmol L(-1) ) was 20-fold larger than in the buffered system (K(m) ~0.5 μmol L(-1) ), indicating that K(m) s determined in unbuffered solutions do not represent the transporter affinity. Increases in the P uptake efficiency of plants by increasing the carrier affinity are therefore unlikely, while increased root surface area or exudation of P-solubilizing compounds are more likely to enhance P uptake. Furthermore, our results highlight the important role natural nanoparticles may have in plant P nutrition.  相似文献   

16.
The volume of the intrafibrillar water space – i.e. the water contained inside the collagen fibres – is a key parameter that is relevant to concepts of connective tissue structure and function. Confined compression and swelling experiments on annulus fibrosus samples are interpreted in terms of a dual porosity model that distinguishes between a non-ionised intrafibrillar porosity and an ionised extrafibrillar porosity. Both porosities intercommunicate and are saturated with a monovalent ionic solution, i.c. NaCl. The extrafibrillar fixed charge density of the samples is assessed using radiotracer techniques and the collagen content is evaluated by measurement of hydroxyproline concentration. The interpretation of the experimental data yields values for the intrafibrillar water content, the average activity coefficient of the ions, the Donnan osmotic coefficient, the fraction of intrafibrillar water, the stress-free deformation state, and an effective stress–strain relationship as a function of the radial position in the disc. A linear fit between the second Piola–Kirchhoff effective stress and Green–Lagrange strain yielded an effective stiffness: He=1.087 ± 0.657 MPa. The average fraction of intrafibrillar water was 1.16 g/g collagen. The results were sensitive to changes in the activity and osmotic coefficients and the fraction of intrafibrillar water. The fixed charge density increased with distance from the outer edge of the annulus, whereas the hydroxyproline decreased.The authors wish to thank Dr. Jill Urban for her advice concerning fixed charge density measurements, and Ing. Paul Willems for his assistance with the experiments. The research of Dr. J. M. Huyghe has been made possible through a fellowship of the Royal Netherlands Academy of Arts and Sciences.  相似文献   

17.
A model of three-dimensional root growth has been developed to simulate the interactions between root systems, water and nitrate in the rooting environment. This interactive behaviour was achieved by using an external-supply/internal-demand regulation system for the allocation of endogenous plant resources. Data from pot experiments on lupins heterogeneously supplied with nitrate were used to test and parameterise the model for future simulation work. The model reproduced the experimental results well (R 2 = 0.98), simulating both the root proliferation and enhanced nitrate uptake responses of the lupins to differential nitrate supply. These results support the use of the supply/demand regulation system for modelling nitrate uptake by lupins. Further simulation work investigated the local uptake response of lupins when nitrate was supplied to a decreasing fraction of the root system. The model predicted that the nitrate uptake activity of lupin roots will increase as the fraction of root system with access to nitrate decreases, but is limited to an increase of around twice that of a uniformly supplied control. This work is the first example of a modelled root system responding plastically to external nutrient supply. This model will have a broad range of applications in the study of the interactions between root systems and their spatially and temporally heterogeneous environment.  相似文献   

18.
Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decreasing the resources required to maintain the root system. Here, we simulated a range of root phenotypes in different soils and root loss scenarios for barley (Hordeum vulgare), common bean (Phaseolus vulgaris), and maize (Zea mays) using and extending the open-source, functional–structural root/soil simulation model OpenSimRoot. The model enabled us to quantify the impact of root loss on shoot dry weight in these scenarios and identify in which scenarios root loss is beneficial, detrimental, or has no effect. The simulations showed that root loss is detrimental for phosphorus uptake in all tested scenarios, whereas nitrogen uptake was relatively insensitive to root loss unless main root axes were lost. Loss of axial roots reduced shoot dry weight for all phenotypes in all species and soils, whereas lateral root loss had a smaller impact. In barley and maize plants with high lateral branching density that were not phosphorus-stressed, loss of lateral roots increased shoot dry weight. The fact that shoot dry weight increased due to root loss in these scenarios indicates that plants overproduce roots for some environments, such as those found in high-input agriculture. We conclude that a better understanding of the effects of root loss on plant development is an essential part of optimizing root system phenotypes for maximizing yield.

Root loss has a major impact on crop development and nutrient uptake; modeling reveals that the magnitude of the effect depends on species, root phenotype, and soil conditions.  相似文献   

19.
Through form to function: root hair development and nutrient uptake   总被引:13,自引:0,他引:13  
Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).  相似文献   

20.
Root hairs substantially extend root surface for ion uptake. Although many reports suggest a relationship between root hairs and phosphorus (P) uptake of plants, the role of root hairs in phosphorus uptake from soils is still debated. We measured uptake of phosphorus from soil directly via root hairs. Root hairs only were allowed to penetrate through a tightly stretched nylon screen (53 µm) glued to the bottom of a PVC tube. The penetrating root hairs grew for 2 and 4 days in soil labelled with radioisotope phosphorus (P) tracer 32P (185 kBq g-1 dry soil) filled in another PVC tube. Transparent plastic rings of thickness ranging from 0.25 mm to 2.0 mm were inserted between the two PVC tubes. This provided slit width for microscopic observations in situ, which confirmed that only root hairs were growing into the 32P labelled soil. In some cases no rings were inserted (slit width = 0) where both root hairs and root surface were in contact with the labelled soil (total 32P uptake). The uptake of32 P from soil via the root hairs only was quantified by measuring activity of 32P in the plant shoot (32P uptake only via root hairs).The results showed that when 70 percent of the root hairs grew into the labelled soil, they contributed to 63 percent of the total P uptake. With decreasing number of root hairs growing into the 32P labelled soil, the quantity of 32P in the plant shoot decreased. In this study, P uptake via root hairs was measured in a soil-based system, where root hairs were the only pathway of 32P from soil to the plant shoot. Therefore, this study provides a strong evidence on the substantial participation of root hairs in uptake of phosphorus from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号