首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Amelogenins: assembly, processing and control of crystal morphology.   总被引:5,自引:0,他引:5  
The remarkable properties of enamel crystals and their arrangements in an extraordinary micro-architecture are clear indications that the processes of crystal nucleation and growth in the extracellular matrix are highly controlled. The major extracellular events involved in enamel formation are: (a) delineation of space by the secretory ameloblasts and the dentino-enamel junction; (b) self-assembly of amelogenin proteins to form the supramolecular structural framework; (c) transportation of calcium and phosphate ions by the ameloblasts resulting in a supersaturated solution; (d) nucleation of apatite crystallites; and (e) elongated growth of the crystallites. Finally, during the 'maturation' step, rapid growth and thickening of the crystallites take place, which is concomitant with progressive degradation and eventual removal of the enamel extracellular matrix components (mainly amelogenins). This latter stage during which physical hardening of enamel occurs is perhaps unique to dental enamel. We have focused our in vitro studies on three major extracellular events: matrix assembly, matrix processing and control of crystal growth. This paper summarizes current knowledge on the assembly, processing and effect on crystal morphology by amelogenin proteins. The correlation between these three events and putative functional roles for amelogenin protein are discussed.  相似文献   

2.
3.
Amelogenin proteins, the principal components of the developing dental enamel matrix, self-assemble to form nanosphere structures that are believed to function as structural components directly involved in the matrix mediated enamel biomineralization. The self-assembly behavior of a recombinant murine amelogenin (rM179) was investigated by atomic force microscopy (AFM) for further understanding the roles of amelogenin proteins in dental enamel biomineralization. Recombinant rM179 amelogenin was dissolved in a pH 7.4 Tris-HCl buffer at concentrations ranging from 12.5 to 300 microg/ml. The solutions were adsorbed on mica, fixed with Karnovsky fixative and rinsed thoroughly with water for atomic force microscopy (AFM). At low concentrations (12.5-50 microg/ml), nanospheres with diameters varying from 7 to 53 nm were identified while at concentrations ranging between 100-300 microg/ml the size distribution was significantly narrowed to be steadily between 10 and 25 nm in diameter. These nanospheres were observed to be the basic building blocks of both engineered rM179 gels and of the developing enamel extracellular matrix. The stable 15-20-nm nanosphere structures generated in the presence of high concentrations of amelogenins were postulated to be of great importance in facilitating the highly organized ultrastructural microenvironment required for the formation of initial enamel apatite crystallites.  相似文献   

4.
Amelogenin is an extracellular matrix protein secreted by ameloblasts and is a major component of enamel matrix. Recently, in addition to their role in enamel formation, the biological activity of enamel proteins in the process of cell differentiation has recently become widely appreciated. In this study, we examined the biological activity of amelogenin on ameloblast differentiation. Recombinant mouse amelogenin (rm-amelogenin) enhanced the expression of endogenous amelogenin mRNA in a cultured dental epithelial cell line (HAT-7), despite a lack of increased amelogenin promoter activity. To solve this discrepancy, we analyzed the effects of rm-amelogenin on the stability of amelogenin mRNA. The half-life of amelogenin mRNA is extremely short, but in the presence of rm-amelogenin its half-life was extended three times longer than the control. Furthermore, we showed the entry of exogenous fluorescein isothiocyanate-conjugated rm-amelogenin into the cytoplasm of HAT-7 cells. It follows from our results that exogenous amelogenin increases amelogenin mRNA levels through stabilization of mRNA in the cytoplasm of HAT-7 cells. Here we speculated that during differentiation, dental epithelial cells utilize a unique mechanism for increasing the production of amelogenin, the reuptake of secreted amelogenin.  相似文献   

5.
Organotypic cultures of embryonic mouse tooth germs were used to investigate the developmental expression and roles of MMPs in the formation and mineralization of dentin and enamel matrices. The spatially and temporally regulated expression of MMP-2, MMP-9 and MMP-20 in developing mouse tooth germs in vivo was maintained in culture. The inhibition of metalloproteinases activity by marimastat altered the morphogenesis and mineralization of the tooth germs associated with an inhibition of the activation of both MMP-20 and MMP-2. MMP inhibition deregulated the molecular processing of two major dental matrix proteins, amelogenin and dentin sialoprotein (DSP). This coincided with their accumulation and the loss of their normal distribution within the extracellular matrix, resulting in a defective mineralization of dentin and enamel matrices. These findings demonstrate the critical role of MMPs in the processing and maturation of the dental matrix.  相似文献   

6.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

7.
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.  相似文献   

8.
A hallmark of biological systems is a reliance on protein assemblies to perform complex functions. We have focused attention on mammalian enamel formation because it relies on a self-assembling protein complex to direct mineral habit. The principle protein of enamel is amelogenin, a 180-amino acid hydrophobic protein that self-assembles to form nanospheres. We have used independent technical methods, consisting of the yeast two-hybrid (Y2H) assay and surface plasmon resonance (SPR), to demonstrate the importance of amelogenin self-assembly domains. In addition, we have analyzed mutations in amelogenin observed in patients with amelogenesis imperfecta who demonstrate defects in enamel formation. Assessments of self-assembly of these mutant amelogenins by either SPR or Y2H assay yield concordant data. These data support the conclusion that the amelogenin amino-terminal self-assembly domain is essential to the creation of an enamel extracellular organic matrix capable of directing mineral formation. It also suggests that a pathway through which point mutations in the amelogenin protein can adversely impact on the formation of the enamel organ is by disturbing self-assembly of the organic matrix. These data support the utilization of the Y2H assay to search for protein interactions among extracellular matrix proteins that contribute to biomineralization and provide functional information on protein-protein and protein-mineral interactions.  相似文献   

9.
The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.  相似文献   

10.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

11.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

12.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

13.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. The full-length amelogenin uniquely regulates the growth, shape, and arrangement of enamel crystals. Protein hydrolysis will ultimately facilitate a tissue with high mineral content. Protein processing is however highly specific suggesting a functional role of the cleaved amelogenins in enamel maturation. Here we hypothesize that the cooperative self-assembly of the recombinant full-length amelogenin 25 kDa and the 23 kDa proteolytic cleavage product is a function of pH, mixing ratio and incubation time and is associated with the isoelectric point of the protein. Self-assembly of amelogenin into nanospheres which increased in size with increasing pH was observed by atomic force microscopy. Elongated structures of about 100 nm length and 25 nm width formed over several days for amelogenin 25 and 23 kDa predominantly at pH-values of 6.5 and 7.5, respectively. When both proteins 25 and 23 kDa were mixed, self-assembled nanostrings of 200–300 nm length consisting of fused nanospheres were obtained at pH around 7.0 within 24 h. The protein nanostrings formed links over time and a continuous mesh was obtained after 7 days. Electrical conductivity data also showed gradual changes when both amelogenins were mixed in solutions supporting the idea that elongated structures form over extended periods of time. We propose that due to the difference in the isoelectric point, self-assembled nanospheres composed of 23 or 25 kDa amelogenin have opposite ionic charges at pH-values around 7.0 and thus experience ionic attraction that enables cooperative self-assembly.  相似文献   

14.
Enamel formation is a powerful model for the study of biomineralization. A key feature common to all biomineralizing systems is their dependency upon the biosynthesis of an extracellular organic matrix that is competent to direct the formation of the subsequent mineral phase. The major organic component of forming mouse enamel is the 180-amino-acid amelogenin protein (M180), whose ability to undergo self-assembly is believed to contribute to biomineralization of vertebrate enamel. Two recently defined domains (A and B) within amelogenin appear essential for this self-assembly. The significance of these two domains has been demonstrated previously by the yeast two-hybrid system, atomic force microscopy, and dynamic light scattering. Transgenic animals were used to test the hypothesis that the self-assembly domains identified with in vitro model systems also operate in vivo. Transgenic animals bearing either a domain-A-deleted or domain-B-deleted amelogenin transgene expressed the altered amelogenin exclusively in ameloblasts. This altered amelogenin participates in the formation an organic enamel extracellular matrix and, in turn, this matrix is defective in its ability to direct enamel mineralization. At the nanoscale level, the forming matrix adjacent to the secretory face of the ameloblast shows alteration in the size of the amelogenin nanospheres for either transgenic animal line. At the mesoscale level of enamel structural hierarchy, 6-week-old enamel exhibits defects in enamel rod organization due to perturbed organization of the precursor organic matrix. These studies reflect the critical dependency of amelogenin self-assembly in forming a competent enamel organic matrix and that alterations to the matrix are reflected as defects in the structural organization of enamel.  相似文献   

15.
Partial amino acid sequences for selected amelogenin polypeptides isolated from the developing enamel of cow, pig and human foetuses are reported. It was found that there was an identity of sequence for the initial 28 residues of the polypeptides analysed, irrespective of their origin or size. A tyrosine-rich polypeptide was shown to be the N-terminal fragment of the principal higher-molecular-weight amelogenins, although a leucine-rich polypeptide of similar size was not identified in any other amelogenin structure. The findings demonstrate a striking degree of sequence conservation for the amelogenin proteins of the extracellular enamel matrix and support the concept of a discrete fragmentation of an initial 30 000 Da amelogenin molecule during the mineralization of the enamel.  相似文献   

16.
Ameloblasts synthesize and secrete the enamel matrix proteins (amelogenin, ameloblastin, and enamelin). This investigation examined the profiles of ameloblastin in the ameloblasts and in the enamel matrix during different postnatal (PN) days (days 0-9) of development of mouse molar, using an antibody specific for C-terminal sequence of ameloblastin (Ct; GNKVHQPQVHNAWRF). Ameloblastin is found in three different molecular sizes (37, 55, and 66 kDa) in both ameloblasts and enamel matrix during PN development. In the ameloblasts, the sequence of expression of these fractions varied. The 37-kDa fraction was observed (even before the appearances of mRNA of the proteases, enamelysin and kallikrein-4) on days 0 and 1, persisted until day 3, and was not found thereafter. Other isoforms (55 and 66 kDa) distinctly appeared in ameloblasts after day 1, reached a peak on day 5, and remained thereafter. The Ct-positive granules appeared beaded in the ameloblasts on day 3. In the extracellular matrix, a 37-kDa (but not 66- or 55-kDa) fraction was detected on days 0 and 1 and remained in the matrix throughout the PN days. The larger isoforms (55 and 66 kDa) appeared in the enamel matrix from day 3 onward. On days 0-3, but not later, the 37-kDa isoform co-localizes with amelogenin in Tomes' process and formative enamel, as revealed by laser scan confocal microscopy. Autoradiography confirmed accumulation of 3H-labeled amelogenin trityrosyl motif peptide in the region of Tomes' process and formative enamel from day 0 to 3. These observations suggest that the 37-kDa isoform interacts with amelogenin during early tooth development.  相似文献   

17.
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.  相似文献   

18.
During the maturation stage of amelogenesis, the loss of matrix proteins combined with an accentuated but regulated influx of calcium and phosphate ions into the enamel layer results in the "hardest" tissue of the body. The aim of the present investigation was to examine the effects of chronic hypocalcemia on the maturation of enamel. Twenty-one-day old male Wistar rats were given a calcium-free diet and deionized water for 28 days, while control animals received a normal chow. The rats were perfused with aldehyde and the mandibular incisors were processed for histochemical and ultrastructural analyses and for postembedding colloidal gold immunolabeling with antibodies to amelogenin, ameloblastin, and albumin. The maturation stage enamel organ in hypocalcemic rats exhibited areas with an apparent increase in cell number and the presence of cyst-like structures. In both cases the cells expressed signals for ameloblastin and amelogenin. The content of the cysts was periodic acid-Schiff- and periodic acid-silver nitrate-methanamine-positive and immunolabeled for amelogenin, ameloblastin, and albumin. Masses of a similar material were also found at the enamel surface in depressions of the ameloblast layer. In addition, there were accumulations of glycoproteinaceous matrix at the interface between ameloblasts and enamel. In decalcified specimens, the superficial portion of the enamel matrix sometimes exhibited the presence of tubular crystal "ghosts." The basal lamina, normally separating ameloblasts and enamel during the maturation stage, was missing in some areas. Enamel crystals extended within membrane invaginations at the apical surface of ameloblasts in these areas. Immunolabeling for amelogenin, ameloblastin, and albumin over enamel was variable and showed a heterogeneous distribution. In contrast, enamel in control rats exhibited a homogeneous labeling for amelogenin, a concentration of ameloblastin at the surface, and weak reactivity for albumin. These results suggest that diet-induced chronic hypocalcemia interferes with both cellular and extracellular events during enamel maturation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号