首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Synopsis The routine swimming speed (S) of three groups of 4, 9 and 32 cm total length (LT) juvenile cod (Gadus morhua) was quantified in the laboratory at 6 – 10 different temperatures (T) between 3.2 and 16.7°C. At temperatures between 5 and 15°C, mean group S increased exponentially with increasing T (S=a ebT) and the effect of temperature (b = 0.082, Q10 = 2.27) was not significantly different among the groups (over the 8-fold difference in fish sizes of early- and post-settlement juveniles). Differences in mean S among individuals within each group were quite large (coefficient of variation = 40 – 80%). Swimming data for juveniles and those collected for groups of 0.4, 0.7 and 0.9 cm standard length (LS) larvae were combined to assess the effect of body size on S. At 8°C, S (mm s−1) increased with LS (mm) according to: S = 0.26LSΦ−5.28LS−1, where Φ = 1.55LS−0.08. Relative S (body lengths s−1) was related to LS by a dome-shaped relationship having a maximum value (0.49 body lengths s−1) at 18.5 – 19 mm LS corresponding to the sizes of fish at the end of larval-juvenile metamorphosis. Previous larval cod IBM’s using a cruise-predator mode likely overestimated rates of foraging (prey searching and encounters) by a factor of ~2, whereas foraging rates in pause-travel models are closer to estimates of swimming velocities obtained in this and other laboratory studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号