首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a strategy for assembling a physical map of the genome of Drosophila melanogaster based on yeast artificial chromosomes (YACs). In this paper we report 500 YACs containing inserts of Drosophila DNA averaging 200 kb that have been assigned positions on the physical map by means of in situ hybridization with salivary gland chromosomes. The cloned DNA fragments have randomly sheared ends (DY clones) or ends generated by partial digestion with either NotI (N clones) or EcoRI (E clones). Relative to the euchromatic portion of the genome, the size distribution and genomic positions of the clones reveal no significant bias in the completeness or randomness of genome coverage. The 500 mapped euchromatic clones contain an aggregate of approximately 100 million base pairs of DNA, which is approximately one genome equivalent of Drosophila euchromatin.by W. Hennig  相似文献   

2.
Two libraries, together containing about 10(6) colonies, have been constructed by cloning different size fractions of a partial Sau3A digest of rat genomic DNA in the cosmid vector pTM. Upon screening with two cDNA clones, one containing alpha A2-crystallin and one containing beta B1-crystallin sequences, 14 cosmid clones were isolated which were beta B1-crystallin-specific; none was found which contained alpha A2-crystallin sequences. The inserts of the beta B1 clones, which range from 35 to 45 kb in length, contain overlapping DNA segments covering more than 60 kb of rat genomic DNA. The composite BamHI restriction map of this region shows a single beta B1-crystallin gene, which is interrupted by several intronic sequences. Five recombinants hybridizing with two different rat lens gamma-crystallin cDNA clones were also isolated from these libraries. Four of these contain 31- to 41-kb inserts, whereas the fifth recombinant contains a 12.2-kb insert. Hybridization analysis with 5' and 3'-specific cDNA fragments indicates that altogether these inserts contain six gamma-crystallin genes, three of which are located on one insert of only 31 kb.  相似文献   

3.
Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.  相似文献   

4.
In the mammalian genome CpG islands are associated with functional genes and cloning of these islands could be an alternative approach for cloning functional genes. Recently we have developed a new approach for cloning CpG islands and constructing NotI linking libraries. We have initiated the construction of a NotI restriction map for chromosome 3, especially focusing on the rearrangements in the 3p14-p21 region, which are associated with different malignancies. CpG islands from this region are useful for isolation of candidate tumor suppressor genes that map to this region and for isolating NotI-linking clones from 3p14-p21 for mapping purposes. Here we suggest a modification of Alu-PCR as an approach to isolating Not I sites (e.g., CpG islands) from defined regions of the chromosome. Instead of using whole chromosomal DNA for Alu-PCR, we have used representative NotI-linking libraries from hybrid cell lines containing either whole or deleted human chromosome 3 (MCH903.1 and MCH924.4, respectively). This decreases the complexity of the Alu-PCR products 10-100 times compared to the whole human genome. Using this modification, we can isolate NotI-linking clones, which are natural markers on the chromosome, rather than random genomic fragments. Among eight clones selected by this method, seven were from the region deleted in MCH924.4. The results clearly demonstrate the feasibility of Alu-PCR for isolating CpG islands from defined regions of the genome.  相似文献   

5.
Summary Two genomic libraries were established to provide markers to develop an integrated map combining molecular markers and genes for qualitative and quantitative morpho-agronomic traits in common bean. Contrasting characteristics were observed for the two libraries. While 89% of the PstI clones were classified as single-copy sequences, only 21% of the EcoRIBamHI clones belonged in that category. Clones of these two libraries were hybridized against genomic DNA of nine genotypes chosen according to their divergent evolutionary origin and contrasting agronomic traits. Eight restriction enzymes were used in this study. PstI clones revealed 80–90% polymorphism between the Andean and Middle American gene pools and 50–60% polymorphism within these gene pools. However, under the same conditions only 30% of the EcoRI-BamHI clones showed polymorphism between the Middle American and Andean gene pools. Hybridization with PstI clones to EcoRI-, EcoRV-, or HindIII-digested genomic DNA resulted in a cumulative frequency of polymorphism of approximately 80%. Hybridizations to BamHI-, HaeIII-, HinfI-, PstI-, and XbaI-digested genomic DNA detected no additional polymorphisms not revealed by the former three enzymes. In the PstI library, a positive correlation was observed between the average size of hybridizing restriction fragments and the frequency of polymorphism detected by each restriction enzyme. This relationship is consistent with the higher proportion of insertion/deletion events compared with the frequency of nucleotide substitutions observed in that library.  相似文献   

6.
Continuous genomic sequence has been previously determined for the swine leukocyte antigen (SLA) class I region from the TNF gene cluster at the border between the major histocompatibility complex (MHC) class III and class I regions to the UBD gene at the telomeric end of the classical class I gene cluster (SLA-1 to SLA-5, SLA-9, SLA-11). To complete the genomic sequence of the entire SLA class I genomic region, we have analyzed the genomic sequences of two BAC clones carrying a continuous 237,633-bp-long segment spanning from the TRIM15 gene to the UBD gene located on the telomeric side of the classical SLA class I gene cluster. Fifteen non-class I genes, including the zinc finger and the tripartite motif (TRIM) ring-finger-related family genes and olfactory receptor genes, were identified in the 238-kilobase (kb) segment, and their location in the segment was similar to their apparent human homologs. In contrast, a human segment (alpha block) spanning about 375 kb from the gene ETF1P1 and from the HLA-J to HLA-F genes was absent from the 238-kb swine segment. We conclude that the gene organization of the MHC non-class I genes located in the telomeric side of the classical SLA class I gene cluster is remarkably similar between the swine and the human segments, although the swine lacks a 375-kb segment corresponding to the human alpha block. The nucleotide sequence data reported in this paper have been submitted to DDBJ, EMBL, and GenBank databases under accession numbers AB158486 and AB158487  相似文献   

7.
A degree of conservation of the genes located between class II and class I [central major histocompatibility complex (MHC) genes] is apparent among mammalian species including primates and the mouse. Few others have been analyzed. The caprine MHC is of particular interest, since it has recently been observed that susceptibility to a lentivirus-induced polyarthritis (caprine arthritis) segregates with serologically defined MHC class I antigens. This arthritis resembles, in a number of respects, rheumatoid arthritis in man. Human cDNA probes were used to examine the caprine central MHC and class I and II genes by restriction fragment length polymorphism (RFLP) and by pulsed field gel electrophoresis (PFGE) in order to define the polymorphism and linkage of central MHC genes to class I and class II genes. An outbred population of dairy goats (Saanen, British Alpine, Anglo Nubian, and Toggenberg) was examined for class I and class II RFLPs. Both regions were found to be highly polymorphic. The number of fragments hybridizing to an HLA-B7 probe after Eco RI, Bam HI, Bgl II, or Hind III digestion suggests there may be 10–13 class I genes. The degree of polymorphism was comparable to that reported in the mouse. Limited polymorphism was found in the central MHC genes. The caprine C4 and CYP21 genes were duplicated and demonstrated RFLP with Bam HI, Hind III, Eco RV, and Taq I. An infrequent Taq I C2 polymorphism was found. PFGE revealed substantial conservation of both the order and linkage of the central MHC genes when compared with mous and man. C4, C2, CYP21, HSP70, and tumor necrosis factor (TNF) genes are all located within 800 kilobase (kb) of the class I loci. Distant from the class I region, the C4, C2, and CYP21 genes are linked on a short genomic segment (180 kb Not I and 190 kb Pvu I fragments). HSP70 cohybridizes with the complement genes on a 380 kb Mlu I fragment. Linkage of HSP70, TNF, and class I genes was found on a single Not I fragment (610 kb). TNF and class I cohybridize on Pvu I (730 kb) and Not I (610 kb) fragments. Conservation of a similar central MHC genomic structure across species argues for functional interaction between the central MHC genes. We postulate selection for these central MHC genes through their role as non antigen-specific regulators of immune response.  相似文献   

8.
The genomic cleavage map of the type strain Fibrobacter succinogenes S85 was constructed. The restriction enzymes AscI, AvrII, FseI, NotI, and SfiI generated DNA fragments of suitable size distribution that could be resolved by pulsed-field gel electrophoresis (PFGE). An average genome size of 3.6 Mb was obtained by summing the total fragment sizes. The linkages between the 15 AscI fragments of the genome were determined by combining two approaches: isolation of linking clones and cross-hybridization of restriction fragments. The genome of F. succinogenes was found to be represented by the single circular DNA molecule. Southern hybridization with specific probes allowed the eight genetic markers to be located on the restriction map. The genome of this bacterium contains at least three rRNA operons. PFGE of the other three strains of F. succinogenes gave estimated genome sizes close to that of the type strain. However, RFLP patterns of these strains generated by AscI digestion are completely different. Pairwise comparison of the genomic fragment distribution between the type strain and the three isolates showed a similarity level in the region of 14.3% to 31.3%. No fragment common to all of these F. succinogenes strains could be detected by PFGE. A marked degree of genomic heterogeneity among members of this species makes genomic RFLP a highly discriminatory and useful molecular typing tool for population studies. Received: 23 October 1996 / Accepted: 31 December 1996  相似文献   

9.
The distal part of 11q13, which contains several genes relevant to human diseases, has been poorly mapped as part of genome-wide mapping efforts. In the prospect of drawing a fine-scale integrated map of the area containingKRN1andOMP,we have established a framework of markers by hybridization to DNA of somatic cell hybrids and by fluorescencein situhybridization (FISH) on metaphase chromosomes. The probes studied were used to isolate 27 YACs and 16 cosmids that could be organized in three contigs covering approximately 6 Mb. These contigs were separated by two gaps that are likely to contain sequences underrepresented in YAC libraries. They were then integrated based on long-range restriction mapping and DNA-fiber FISH into a high-resolution physical map, which covers a 5.5-Mb region and includes 36 anonymous markers and 10 genes. This map will be used to search for genes within the 2/3 of this region where none have been localized as yet. It will also lay the ground for the characterization of an amplicon surroundingGARPin breast cancer and for the search of disease genes within this region.  相似文献   

10.
We report the construction of a YAC library that provides 10-fold redundant coverage of the chicken genome. The library was made by transforming S. cerevisiae AB1380 with YAC constructs consisting of partially digested and size fractionated (>465 kb) EcoRI genomic fragments ligated to pCGS966 YAC vector arms. The primary library provides 8.5-fold redundant coverage and consists of 16,000 clones arrayed in duplicate 96-well microtiter plates and gridded on nylon membranes at high density (18,000 clones/484cm2). The average insert size, 634 kb, was derived from size fractionation of a random sample of 218 YACs. Hybridization of five unlinked chicken genes to colony blots revealed six or more positive clones. This is consistent with the theoretical expectation from average insert sizes and number of clones. A second collection of clones consists of a further 20,000 colonies, of which 20% contain inserts larger than 450 kb and 80% contain only coligated vector arms. We estimate that these clones provide a further 1.5-fold redundant coverage of the chicken genome; thus, the total collection of 36,000 clones provides 10-fold redundant coverage of the chicken genome. The library is intended as a resource for fine-scale analysis of the organization of the chicken genome and is presently being used to construct a contig map of chicken Chromosome (Chr) 16, which contains the MHC and nucleolar organizer. Received: 15 July 1996 / Accepted: 20 November 1996  相似文献   

11.
In order to determine the genomic organization of the major histocompatibility complex (MHC) of the domestic cat (Felis catus), DNA probes for 61 markers were designed from human MHC reference sequences and used to construct feline MHC BAC contig map spanning ARE1 in the class II region to the olfactory receptor complex in the extended class I region. Selected BAC clones were then used to identify feline-specific probes for the three regions of the mammalian MHC (class II–class III–class I) for radiation hybrid mapping and fluorescent in situ hybridization to refine the organization of the domestic cat MHC. The results not only confirmed that the p-arm of domestic cat B2 is inverted relative to human Chromosome 6, but also demonstrated that one inversion breakpoint localized to the distal segment of the MHC class I between TRIM39 and TRIM26. The inversion thus disjoined the ~2.85 Mb of MHC containing class II–class III–class I (proximal region) from the ~0.50 Mb of MHC class I/extended class I region, such that TRIM39 is adjacent to the Chromosome B2 centromere and TRIM26 is adjacent to the B2 telomere in the domestic cat.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

12.
The major histocompatibility complex (MHC) is a highly polymorphic genomic region that plays a central role in the immune system. Despite its functional consistency, the genomic structure of the MHC differs substantially among organisms. In birds, the MHC-B structures of Galliformes, including chickens, have been well characterized, but information about other avian MHCs remains sparse. The Japanese Crested Ibis (Nipponia nippon, Pelecaniformes) is an internationally conserved, critically threatened species. The current Japanese population of N. nippon originates from only five founders; thus, understanding the genetic diversity among these founders is critical for effective population management. Because of its high polymorphism and importance for disease resistance and other functions, the MHC has been an important focus in the conservation of endangered species. Here, we report the structure and polymorphism of the Japanese Crested Ibis MHC class II region. Screening of genomic libraries allowed the construction of three contigs representing different haplotypes of MHC class II regions. Characterization of genomic clones revealed that the MHC class II genomic structure of N. nippon was largely different from that of chicken. A pair of MHC-IIA and -IIB genes was arranged head-to-head between the COL11A2 and BRD2 genes. Gene order in N. nippon was more similar to that in humans than to that in chicken. The three haplotypes contained one to three copies of MHC-IIA/IIB gene pairs. Genotyping of the MHC class II region detected only three haplotypes among the five founders, suggesting that the genetic diversity of the current Japanese Crested Ibis population is extremely low. The structure of the MHC class II region presented here provides valuable insight for future studies on the evolution of the avian MHC and for conservation of the Japanese Crested Ibis.  相似文献   

13.
The major histocompatibility complex (MHC) class I region of teleosts harbors a tight cluster of the class IA genes and several other genes directly involved in class I antigen presentation. Moreover, the dichotomous haplotypic lineages (termed d- and N- lineages) of the proteasome subunit beta genes, PSMB8 and PSMB10, are present in this region of the medaka, Oryzias latipes. To understand the evolution of the Oryzias MHC class I region at the nucleotide sequence level, we analyzed bacterial artificial chromosome clones covering the MHC class I region containing the d- lineage of Oryzias luzonensis and the d- and N- lineages of Oryzias dancena. Comparison among these three elucidated sequences and the published sequences of the d- and N- lineages of O. latipes indicated that the order and orientation of the encoded genes were completely conserved among these five genomic regions, except for the class IA genes, which showed species-specific variation in copy number. The PSMB8 and PSMB10 genes showed trans-species dimorphism. The remaining regions flanking the PSMB10, PSMB8, and class IA genes showed high degrees of sequence conservation at interspecies as well as intraspecies levels. Thus, the three independent evolutionary patterns under apparently distinctive selective pressures are recognized in the Oryzias MHC class I region. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The recently developed technique for cloning genomic DNA fragments of several hundred kilobases or more into yeast artificial chromosomes (YACs) makes it possible to isolate gene families while preserving their structural integrity. We have analyzed five independent yeast clones identified by PCR screening using oligonucleotides derived from the adult human β-globin gene. Analysis of the five clones containing YACs by conventional and pulsed-field gel electrophoresis revealed that all of the clones include a YAC with sequences from the adult β-globin gene as expected. One of the clones contains multiple, unstable YACs. Two other clones carry single YACs in which there are at least two unrelated human genomic inserts. The remaining two clones contain single YACs, 150 and 220 kb in size, that contain the entire β-globin gene family and flanking regions in a single, structurally intact genomic fragment. These should prove useful in future studies of the regulation of expression of genes in the β-globin gene cluster.  相似文献   

15.
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (~95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome.  相似文献   

16.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments. Received: 21 November 1996; in revised form: 3 March 1997 / Accepted: 27 March 1997  相似文献   

17.
Quinoa (Chenopodium quinoa Willd.) is adapted to the harsh environments of the Andean Altiplano region. Its seeds have a well-balanced amino acid composition and exceptionally high protein content with respect to human nutrition. Quinoa grain is a staple in the diet of some of the most impoverished people in the world. The plant is an allotetraploid displaying disomic inheritance (2n=4x=36) with a di-haploid genome of 967 Mbp (megabase pair), or 2C=2.01 pg. We constructed two quinoa BAC libraries using BamHI (26,880 clones) and EcoRI (48,000 clones) restriction endonucleases. Cloned inserts in the BamHI library average 113 kb (kilobase) with approximately 2% of the clones lacking inserts, whereas cloned inserts in the EcoRI library average 130 kb and approximately 1% lack inserts. Three plastid genes used as probes of high-density arrayed blots of 73,728 BACs identified approximately 2.8% of the clones as containing plastid DNA inserts. We estimate that the combined quinoa libraries represent at least 9.0 di-haploid nuclear genome equivalents. An average of 12.2 positive clones per probe were identified with 13 quinoa single-copy ESTs as probes of the high-density arrayed blots, suggesting that the estimate of 9.0× coverage of the genome is conservative. Utility of the BAC libraries for gene identification was demonstrated by probing the library with a partial sequence of the 11S globulin seed storage protein gene and identifying multiple positive clones. The presence of the 11S globulin gene in four of the clones was verified by direct comparison with quinoa genomic DNA on a Southern blot. Besides serving as a useful tool for gene identification, the quinoa BAC libraries will be an important resource for physical mapping of the quinoa genome.  相似文献   

18.
The recently developed technique for cloning genomic DNA fragments of several hundred kilobases or more into yeast artificial chromosomes (YACs) makes it possible to isolate gene families while preserving their structural integrity. We have analyzed five independent yeast clones identified by PCR screening using oligonucleotides derived from the adult human beta-globin gene. Analysis of the five clones containing YACs by conventional and pulsed-field gel electrophoresis revealed that all of the clones include a YAC with sequences from the adult beta-globin gene as expected. One of the clones contains multiple, unstable YACs. Two other clones carry single YACs in which there are at least two unrelated human genomic inserts. The remaining two clones contain single YACs, 150 and 220 kb in size, that contain the entire beta-globin gene family and flanking regions in a single, structurally intact genomic fragment. These should prove useful in future studies of the regulation of expression of genes in the beta-globin gene cluster.  相似文献   

19.
《Gene》1996,171(2):281-284
A vector is described for the expression of genomic or cDNA copies of bovine major histocompatibility complex (MHC) class I genes in transfected mouse Ltk cells. Class I gene fragments are amplified by the polymerase chain reaction, using primers in conserved parts of exon 2 and the 3′-untranslated region of the gene. Amplified class I gene fragments can then be subcloned into the expression vector, pBoLA-21, which contains the necessary 5′-and 3′-sequences for correct expression. The vector was tested by subcloning and expressing genomic and cDNA clones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号