首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken liver fatty acid synthase is rapidly inactivated and cross-linked at pH 7.2 and 8.0 by incubation with low concentrations of common biological disulfides including glutathione disulfide, coenzyme A disulfide, and glutathione-coenzyme A-mixed disulfide. Glutathione disulfide inactivation of the enzyme is accompanied by the oxidation of a total of 4-5 enzyme thiols per monomer. Only one glutathione equivalent is incorporated per monomer as a protein-mixed disulfide, and its rate of incorporation is significantly slower than the rate of inactivation. The formation of protein-SS-protein disulfides results in significant cross-linking of enzyme subunits. The inactive enzyme is rapidly and completely reactivated, and the cross-linking is completely reversed by incubation of the enzyme with thiols (10-20 mM) including dithiothreitol, mercaptoethanol, and glutathione. In a glutathione redox buffer (GSH + GSSG), disulfide bond formation comes to equilibrium. The enzyme activity at equilibrium is dependent both on the ratio of glutathione to glutathione disulfide and on the total glutathione concentration. The equilibrium constant for the redox equilibration of fatty acid synthase in a glutathione redox buffer is 15 mM (Ered + GSSG in equilibrium Eox + 2GSH). The formation of at least one protein-protein disulfide per monomer dominates the redox properties of the enzyme while the formation of one protein-mixed disulfide with glutathione (Kmixed = 0.45) has little effect on activity. The oxidation equilibrium constant suggests that there would be no significant cycling between the reduced and the oxidized enzyme in response to likely physiological variations in the hepatic glutathione status. The possibility that changes in the concentration of cellular glutathione may act as a mechanism for metabolic control of other enzymes is discussed.  相似文献   

2.
Rat pineal hydroxyindole-O-methyltransferase activity in crude homogenates is reduced by treatment with disulfides. Cystamine (IC50 = 128 microM) and selenocystamine (IC50 = 13 microM) are the most potent compounds tested. Reduced cystamine (cysteamine) and diaminohexane are inactive. N,N'-Diacetylcystamine, penicillamine disulfide, and glutathione disulfide are less potent or inactive; but several peptides (oxytocin, vasopressin, and arginine vasotocin) are active. Inactivation by cystamine is time- and temperature-dependent and is accelerated at higher pH. Disulfide treatment of intact pinealocytes also inactivates the enzyme. Addition of dithiothreitol during the enzyme assay completely reactivates inactivated enzyme formed by disulfide treatment of homogenates or intact cells. Rat hydroxyindole-O-methyltransferase is also inactivated in the absence of added disulfides and dissolved O2. This spontaneous inactivation is time-, temperature-, and pH-dependent and can be completely prevented, but not reversed, by dithiothreitol. In contrast to the inhibitory effects of cystamine on the rat enzyme, cystamine does not alter bovine hydroxyindole-O-methyltransferase and increases ovine hydroxyindole-O-methyltransferase activity. The bovine and ovine enzymes do not become inactive in the absence of added disulfides. Together these observations indicate that rat pineal hydroxyindole-O-methyltransferase can be inactivated by a protein thiol:disulfide exchange mechanism. This mechanism may contribute to the physiological regulation of this enzyme in the rat pineal gland but does not appear to be a common feature of pineal hydroxyindole-O-methyltransferase regulation in all species.  相似文献   

3.
The activity of prolyl endopeptidase was markedly decreased during incubation of intact murine erythroleukemia cells at 45 degrees C, but not during incubation of sonicated cells or during incubation at 42 degrees C. The thermal inactivation of prolyl endopeptidase in situ required neither the synthesis of proteins and polynucleotides nor the synergistic activation of inhibitors. Moreover, inhibition of lysosomal proteinases and calpains or depletion of ATP did not affect the thermal inactivation of prolyl endopeptidase. This specific inactivation of prolyl endopeptidase was also observed following the addition to the culture medium of menadione or diamide, compounds known to increase intracellular oxidized glutathione levels. The activity of prolyl endopeptidase in the cell lysate was also dose-dependently decreased by the addition of glutathione disulfide and the decrease of the activity was prevented by coexistence of reduced glutathione. Furthermore, the level of intracellular oxidized glutathione was increased during incubation at 45 degrees C for 15 min, but not at 42 degrees C for 30 min. These results strongly suggest that the activity of prolyl endopeptidase is regulated by changes in the intracellular redox potential.  相似文献   

4.
Rabbit muscle phosphofructokinase is rapidly inactivated at pH 8.0 by incubation with low concentrations of oxidized glutathione, Coenzyme A glutathione mixed disulfide, and oxidized Coenzyme A. The inactivation is first order in disulfide concentration over the concentration ranges examined (50-200 microM), and is approximately 8-fold slower at pH 7.0 than at pH 8.0. The substrates ATP and fructose 6-phosphate protect against inactivation while effector molecules such as AMP, cAMP, and citrate do not. The oxidation of the enzyme by disulfides is fully reversible. The equilibrium constant for the reaction Ered + GSSG in equilibrium Eox + GSH at pH 8.0 is 7.1 in the absence of substrates and 2.5 in the presence of 0.1 mM ATP. For comparison, the equilibrium constant for the reaction CoASH + GSSG in equilibrium CoASSG + GSH was found to be 3.1 at pH 8.0. These equilibrium constants for thiol/disulfide exchange are such that modulation of phosphofructokinase activity by thiol/disulfide exchange in vivo is feasible. The ability of the thiol/disulfide ratio in vivo to modulate the activity of the fructose 6-phosphate/fructose 1,6-diphosphate futile cycle is discussed. The possibility is considered that modulation of the thiol/disulfide ratio in vivo may serve as a "third messenger" in response to cAMP levels, and that the activity of key enzymes of glycolysis/gluconeogenesis may be regulated in response to changing thiol/disulfide ratios.  相似文献   

5.
An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2-oxidation, as a function of temperature. The order of reactivity observed in these reactions most likely reflects the accessibility of the reactive cystine or methionine side chains present in the three related proteinases, and hence a difference in the compactness of their protein structures.  相似文献   

6.
Copper-catalyzed oxidation of ascorbic acid was retarded in the presence of the biological disulfide compounds cystine and oxidized glutathione. The evidence suggested that this effect was due to the formation of a stable complex involving the copper ion, the disulfide compound, and ascorbic acid or a derivative formed during the oxidative process. This indicated that less copper was available for the formation of oxygen complexes which are not as stable as the disulfide complexes. Ellman's reagent (Nbs2) was reduced when it was substituted for the biological disulfides or when added, with EDTA, to solutions in which ascorbic acid, copper ion, and the biological disulfides had been allowed to interact. The complex formed with cystine was detected at 360 nm but the glutathione complex was not detected at this wavelength. It is proposed that disruption of cystine or glutathione complexes by EDTA results in formation of 2,3-diketogulonic acid which acts as a reductant of Ellman's reagent.  相似文献   

7.
Rabbit skeletal muscle glycogen debranching enzyme is inactivated in a kinetically biphasic manner by GSSG at pH 8.0. The rapid phase results in the loss of 30% activity, while the slower phase leads to total enzyme inactivation. Both the glucosidase and the transferase activities of the enzyme are inhibited by GSSG. The inactivation by disulfides is fully and rapidly reversed in a biphasic manner by reduction with excess reduced dithiothreitol or GSH. After a fast initial recovery of 70% of the initial activity, the remaining 30% of the activity is recovered more slowly. Equilibration of the enzyme with a redox buffer of GSH and GSSG shows a monophasic equilibration of the activity. The ratio of GSH/GSSG where the enzyme is 50% active (R0.5) is 0.06 +/- 0.03. The R0.5 does not vary significantly with the total concentration of glutathione species suggesting formation of protein-SSG mixed disulfides. The ratios of the observed second-order rate constants for GSSG inactivation and GSH reactivation do not lead to a correct value of the observed thiol/disulfide oxidation equilibrium constant. Although the enzyme has sulfhydryl groups, the oxidation of which leads to activity changes, the kinetic and thermodynamic resistance to oxidation suggests that the enzyme is not likely to be subject to regulation by thiol/disulfide exchange in vivo.  相似文献   

8.
Studies on the mechanisms of ornithine decarboxylase in vitro inactivation   总被引:5,自引:0,他引:5  
Hydrocortisone-induced rat liver ornithine decarboxylase appears quite stable in the soluble fraction of the homogenate incubated at 37 degrees C. In contrast, the incubation of the whole homogenate causes a rapid loss of activity. The ornithine decarboxylase-inactivating capacity appears mainly bound to microsomes. Lysosomes seem to play a role only after the microsome-induced inactivation. Different reducing agents (dithiothreitol, NADPH, NADH, GSH) are effective both in preventing and in reversing ornithine decarboxylase inactivation. NADPH is peculiar in that it can reactivate the enzyme at very low concentrations. Oxidized glutathione potentiates the inactivating effect of microsomes. On the basis of present results it is suggested that ornithine decarboxylase may be reversibly inactivated through microsome-catalyzed formation of mixed or enzyme-enzyme disulfides and that NADPH plays a crucial role in ornithine decarboxylase reactivation, probably by cytosolic reductase(s).  相似文献   

9.
Summary Three lactate dehydrogenase isozymes and malate dehydrogenase purified from mouse tissues were inactivated with time by low concentration of gossypol. The degree of enzyme inactivation is both gossypoland enzyme-concentration-dependent. Under the same experimental conditions, lactate dehydrogenase-X and lactate dehydrogenase-5 were inactivated faster than lactate dehydrogenase-1. NADH was shown to partially protect the enzymes against inactivation by gossypol. The results of this study suggest that the enzymes are inactivated by the minor components in gossypol preparations. Isozymes of glutathione S-transferases were reversibly inhibited by gossypol. The inhibition of transferases by gossypol was shown to be competitive with respect to the 1-chloro-2,4-dinitrobenzene. It is proposed that the male antifertility effect of gossypol may be related to the selective inactivation of sperm-specific lactate dehydrogenase-X.  相似文献   

10.
Calcium-dependent proteinases or calpains were studied in fish muscle. Hydrophobic chromatography, followed by anion-exchange chromatography of the soluble fraction of sea bass white muscle proteins, resulted in three peaks of calcium-dependent protease activity at neutral pH (A, B and C). They are all neutral cysteine calcium-activated proteinases and can, therefore, be classified as calpain-like enzymes. From the Ca2+ concentration required for activity, A is a mu-calpain, and B and C are m-calpains. They share many properties with calpains from other vertebrate cells but differ in native mass, subunit composition, and the unusual numbers in which they are present. Their specific pattern of expression throughout the year could be of great importance to the resulting rate and extent of degradation of fish flesh after death.  相似文献   

11.
Proteomics data have suggested ascorbate peroxidase (APX) to be a potential thioredoxin-interacting protein. Using recombinant enzymes, we observed that incubation of pea cytosolic APX with reduced poplar thioredoxins h drastically inactivated the peroxidase. A similar inactivation is induced by reduced glutathione and dithiothreitol, whereas diamide and oxidized glutathione have no effect. Oxygen consumption measurements, modifications of the APX visible spectrum and protection by hydrogen peroxide scavenging enzymes suggest that APX oxidizes thiols leading to the generation of thiyl radicals. These radicals can in turn react with thiyl anions to produce the disulfide radical anions, which are responsible for oxygen reduction and subsequent hydrogen peroxide production. The APX inactivation is not due solely to hydrogen peroxide since fluorimetry indicates that the environment of the APX tryptophan residues is dramatically modified only in the presence of thiol groups. The physiological implications of this interaction are discussed.  相似文献   

12.
Thioltransferase, an enzyme which catalyzes the thiol/disulfide exchange reaction in the presence of GSH, was purified to homogeneity on 15% SDS-PAGE from human (36,000-fold purification) and bovine (23,000-fold) erythrocyte hemolysates. These enzymes had similar properties in their monomeric structures (M(r) = 11,000) and broad specificities for substrates ranging from low-molecular disulfides (S-sulfocysteine, cystamine, and cystine) to protein disulfides (trypsin and insulin). They were highly sensitive to SH-reagents (monoiodoacetic acid and mercuric chloride), but were protected from inactivation by the presence of disulfides (GSSG, cystamine, and cystine). Phosphofructokinase and pyruvate kinase that had been inactivated by disulfides were reactivated effectively by the addition of thioltransferase with GSH. In addition, disulfides in membrane proteins of human erythrocytes that have been oxidatively damaged by diamide treatment were reduced to the SH-free form more effectively by incubation with thioltransferase.  相似文献   

13.
A factor inactivating phosphorylase phosphatase was isolated from rabbit liver. The isolation procedure consisted of heat treatment at 85 degrees C, extraction with n-butyl alcohol, and chromatography on Dowex 1 and DEAE-cellulose columns. The purified factor was different from the known protein inhibitors and was shown to be tripeptide composed of equimolar amounts of glutamic acid, cysteine, and glycine. The NH2-terminal and COOH-terminal amino acids were determined as glutamic acid and glycine, respectively. The factor was finally identified as glutathione disulfide by high voltage paper electrophoresis, paper chromatography, and liquid column chromatography using an amino acid analyzer. Addition of the purified factor or glutathione disulfide converted phosphorylase phosphatase to a stable, less active enzyme species, the extent of conversion depending on the amount added. The inactivated phosphatase was completely reactivated by addition of both glutathione (or 2-mercaptoethanol) and Mn2+ and partially reactivated by adding glutathione alone. Injection of glutathione disulfide into the portal vein of rabbits caused a rapid increase in phosphorylase alpha activity in the liver. These results suggest that glutathione disulfide is involved in regulation of phosphorylase activity in vivo, by causing inactivation of phosphorylase phosphatase in the liver.  相似文献   

14.
Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.  相似文献   

15.
1. Tyrosine aminotransferase from guinea-pig liver is inactivated at neutral pH by a factor localized in the microsomal fraction. The inactivation, independent of exogenous L-cysteine, is rapidly reversed by addition of dithiothreitol. 2. The effects of physiological reducing agents on the enzyme inactivation were investigated. L-Cysteine and L-cysteamine enhance the inactivation rate of the enzyme in the presence of microsomal membranes, and also they are able to bring about the loss in enzyme activity independently of microsomal action. Reduced glutathione, at physiological concentration, and NADPH decrease the inactivation rate. Other physiological reducing compounds, as well as oxidized glutathione and NADP+, are without effect. 3. Neither reduced glutathione nor NADPH, unlike dithiothreitol and mercaptoethanol, is able to restore the activity of partially inactivated tyrosine aminotransferase. 4. It is proposed that the intracellular concentration of reduced glutathione might modulate the rate of inactivation of the enzyme in vivo.  相似文献   

16.
Soluble guanylate cyclase of human platelets was stimulated by thiol oxidizing compounds like diamide and the reactive disulfide 4, 4'-dithiodipyridine. Activation followed a bell-shaped curve, revealing somewhat different optimum concentrations for each compound, although in both cases, higher concentrations were inhibitory. Diamide at a concentration of 100 microM transiently activated the enzyme. In the presence of moderate concentrations of diamide and 4,4'-dithiodipyridine, causing a two- to fourfold activation by themselves, the stimulatory activity of NO-releasing compounds like sodium nitroprusside was potentiated. In contrast, higher concentrations of thiol oxidizing compounds inhibited the NO-stimulated activation of soluble guanylate cyclase. Activation of guanylate cyclase was accompanied by a reduction in reduced glutathione and a concomitant formation of protein-bound glutathione (protein-SSG). Both compounds showed an activating potency as long as reduced glutathione remained, leading to inhibition of the enzyme just when all reduced glutathione was oxidized. Activation was reversible while reduced glutathione recovered and protein-SSG disappeared. We propose that diamide or reactive disulfides and other thiol oxidizing compounds inducing thiol-disulfide exchange activate soluble guanylate cyclase. In this respect partial oxidation is associated with enzyme activation, whereas massive oxidation results in loss of enzymatic activity. Physiologically, partial disulfide formation may amplify the signal toward NO as the endogenous activator of soluble guanylate cyclase.  相似文献   

17.
Ward NE  Stewart JR  Ioannides CG  O'Brian CA 《Biochemistry》2000,39(33):10319-10329
Protein kinase C (PKC) isozymes are subject to inactivation by reactive oxygen species (ROS) through as yet undefined oxidative modifications of the isozyme structure. We previously reported that Cys-containing, Arg-rich peptide-substrate analogues spontaneously form disulfide-linked complexes with PKC isozymes, resulting in isozyme inactivation. This suggested that PKC might be inactivated by oxidant-induced S-glutathiolation, i.e., disulfide linkage of the endogenous molecule glutathione (GSH) to PKC. Protein S-glutathiolation is a reversible oxidative modification that has profound effects on the activity of certain enzymes and binding proteins. To directly examine whether PKC could be inactivated by S-glutathiolation, we used the thiol-specific oxidant diamide because its oxidant activity is restricted to induction of disulfide bridge formation. Diamide weakly inactivated purified recombinant cPKC-alpha, and this was markedly potentiated to nearly full inactivation by 100 microM GSH, which by itself was without effect on cPKC-alpha activity. Diamide inactivation of cPKC-alpha and its potentiation by GSH were both fully reversed by DTT. Likewise, GSH markedly potentiated diamide inactivation of a PKC isozyme mixture purified from rat brain (alpha, beta, gamma, epsilon, zeta) in a DTT-reversible manner. GSH potentiation of diamide-induced cPKC-alpha inactivation was associated with S-glutathiolation of the isozyme. cPKC-alpha S-glutathiolation was demonstrated by the DTT-reversible incorporation of [(35)S]GSH into the isozyme structure and by an associated change in the migration position of cPKC-alpha in nonreducing SDS-PAGE. Diamide treatment of NIH3T3 cells likewise induced potent, DTT-reversible inactivation of cPKC-alpha in association with [(35)S] S-thiolation of the isozyme. Taken together, the results indicate that PKC isozymes can be oxidatively inactivated by S-thiolation reactions involving endogenous thiols such as GSH.  相似文献   

18.
We have reported recently that the disulfide groups in bovine serum albumin can be reduced by a radiolytic chain reaction which occurs in deoxygenated solutions containing formate ions. This reaction, which involves the reduction of disulfide groups by hydrated electrons and carbon dioxide radical anions, has now been studied in greater detail and compared with an analogous reaction in small, disulfide containing molecules over a range of pH values and substrate concentrations. A two-step reaction is proposed to account for the reduction of disulfides in reactions which can have chain lengths of 20 or more. Thiols produced by the disulfide reduction are stable to the conditions of the reaction. For example, a biological assay showed that the integrity of glutathione was maintained even at radiation doses much larger than those required to achieve complete reduction of glutathione disulfide. It was found that the extent of disulfide reduction could easily be controlled by varying the radiation dose delivered to the solutions. Radiolytic reduction is a very useful way of reducing protein and low molecular weight disulfides without the use of excess quantities of reagents such as dithiothreitol. In many cases, the reaction solutions could be used directly for subsequent reactions and this may be of considerable value in modifying the structure of hormones, enzymes, membrane receptors, and other disulfide containing proteins. If ammonium formate is used, freeze drying is an effective way to remove the formate salt, should this be required.  相似文献   

19.
Regulation of PTP1B via glutathionylation of the active site cysteine 215.   总被引:6,自引:0,他引:6  
The reversible regulation of protein tyrosine phosphatase is an important mechanism in processing signal transduction and regulating cell cycle. Recent reports have shown that the active site cysteine residue, Cys215, can be reversibly oxidized to a cysteine sulfenic derivative (Denu and Tanner, 1998; Lee et al., 1998). We propose an additional modification that has implications for the in vivo regulation of protein tyrosine phosphatase 1B (PTP1B, EC 3.1.3.48): the glutathionylation of Cys215 to a mixed protein disulfide. Treatment of PTP1B with diamide and reduced glutathione or with only glutathione disulfide (GSSG) results in a modification detected by mass spectrometry in which the cysteine residues are oxidized to mixed disulfides with glutathione. The activity is recovered by the addition of dithiothreitol, presumably by reducing the cysteine disulfides. In addition, inactivated PTP1B is reactivated enzymatically by the glutathione-specific dethiolase enzyme thioltransferase (glutaredoxin), indicating that the inactivated form of the phosphatase is a glutathionyl mixed disulfide. The cysteine sulfenic derivative can easily oxidize to its irreversible sulfinic and sulfonic forms and hinder the regulatory efficiency if it is not converted to a more stable and reversible end product such as a glutathionyl derivative. Glutathionylation of the cysteine sulfenic derivative will prevent the enzyme from further oxidation to its irreversible forms, and constitutes an efficient regulatory mechanism.  相似文献   

20.
The distribution of the glutathionyl moiety between reduced and oxidized forms in rat plasma was markedly different than that for the cysteinyl moiety. Most of the glutathionyl moiety was present as mixed disulfides with cysteine and protein whereas most of the cysteinyl moiety was present as cystine. Seventy percent of total glutathione equivalents was bound to proteins in disulfide linkage. The distribution of glutathione equivalents in the acid-soluble fraction was 28.0% as glutathione, 9.5% as glutathione disulfide, and 62.6% as the mixed disulfide with the cysteinyl moiety. In contrast, 23% of total cysteine equivalents was protein-bound. The distribution of cysteine equivalents in the acid-soluble fraction was 5.9% as cysteine, 83.1% as cystine, and 10.8% as the mixed disulfide with the glutathionyl moiety. A first-order decline in glutathione occurred upon in vitro incubation of plasma and was due to increased formation of mixed disulfides of glutathione with cysteine and protein. This indicates that plasma thiols and disulfides are not at equilibrium, but are in a steady-state maintained in part by transport of these compounds between tissues during the inter-organ phase of their metabolism. The large amounts of protein-bound glutathione and cysteine provide substantial buffering which must be considered in analysis of transient changes in glutathione and cysteine. In addition, this buffering may protect against transient thiol-disulfide redox changes which could affect the structure and activity of plasma and plasma membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号