首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the use of vector-based RNA interference (RNAi) to specifically interfere with gene expression in chick embryos is reported. In ovo electroporation was carried out to transfer a small interfering RNA (siRNA) expression vector into chick embryos. En2 was chosen for the target gene because the family gene, En1, is expressed in a similar pattern. Four sets of 19-mer sequences were designed with the En2 open reading frame region connected to a sequence of short hairpin RNA (shRNA), which exerts siRNA effects after being transcribed, and inserted into pSilencer U6-1.0 vector. En2 and En1 expression were suppressed by the siRNA whose sequence completely matched En2 and En1. Suppression occurred when the siRNA sequence differed by up to two nucleotides from the target sequence. The sequence that differed by four nucleotides from the target gene did not show siRNA effects. One set that completely matched the En2 target did not show siRNA effects, which may be due to location of the siRNA in the target gene. Thus, multiple sets of shRNA must be prepared if we are to consider. This system will greatly contribute to the analysis of function of genes of interest, because the target gene can be silenced in a locally and temporally desired manner.  相似文献   

2.
3.
4.
5.
Centromeric protein-E (CENP-E) is a kinesin-like motor protein required for chromosome congression at prometaphase. Functional perturbation of CENP-E by various methods results in a consistent phenotype, i.e., unaligned chromosomes during mitosis. One unresolved question from previous studies is whether cells complete mitosis or sustain mitotic arrest in the presence of unaligned chromosomes. Using RNA interference and video-microscopy, we analyzed the dynamic process of mitotic progression of HeLa(H2B)-GFP cells lacking CENP-E. Our results demonstrate that these cells initiated anaphase after a delayed mitotic progression due to the presence of unaligned chromosomes. In some dividing cells, unaligned chromosomes are present during anaphase, causing nondisjunction of some sister chromatids producing aneuploid daughter cells. Unlike in Xenopus extract, the loss of CENP-E in HeLa cells does not impair gross checkpoint activation because cells were arrested in mitosis in response to microtubule-interfering agents. However, the lack of CENP-E at kinetochores reduced the hyperphosphorylation of BubR1 checkpoint protein during mitosis, which may explain the loss of sensitivity of a cell to a few unaligned chromosomes in the absence of CENP-E. We also found that presynchronization with nocodazole sensitizes cells to the depletion of CENP-E, leading to more unaligned chromosomes, longer arrest, and cell death.  相似文献   

6.
We developed and characterized replicative small interfering RNA (siRNA) vectors for efficient, specific, and long-term gene silencing in human cells. We created stable XPA(KD) and XPC(KD) (knockdown) syngeneic cell lines to mimic human cancer-prone syndromes. We also silenced (HSA)KIN17. Several clones displaying undetectable protein levels of XPA, XPC, or (HSA)kin17 were grown for more than 300 days. This stability of gene silencing over several months of culture allows us to assess the specific involvement of these proteins in UVC sensitivity in syngeneic cells. Unlike XPA, (HSA)KIN17, and XPC gene silencing dramatically impeded HeLa cell growth for several weeks after transfection. As expected, XPA(KD) and XPC(KD) HeLa cells were highly UVC sensitive. They presented an impaired unscheduled DNA synthesis after UVC irradiation. Interestingly, XPC(KD) HeLa clones were more sensitive to UVC than their XPA(KD) or KIN17(KD) counterparts. Hygromycin B withdrawal led to the total disappearance of EBV vectors and the resumption of normal XPA or XPC protein levels. Whereas reverted XPA(KD) cells recovered a normal UVC sensitivity, XPC(KD) cells remained highly sensitive, suggestive of irreversible damage following long-term XPC silencing. Our results show that in HeLa cells, (HSA)kin17 participates indirectly in early events following UVC irradiation, and XPC deficiency strongly affects cell physiology and contributes to UVC sensitivity to a greater extent than does XPA. EBV-based siRNA vectors improve the interest of siRNA by permitting long-term gene silencing without the safety concerns inherent in viral-based siRNA vehicles.  相似文献   

7.
Cellular RNA interference (RNAi) provides a natural response against viral infection, but some viruses have evolved mechanisms to antagonize this form of antiviral immunity. To determine whether Ebolavirus (EBOV) counters RNAi by encoding suppressors of RNA silencing (SRSs), we screened all EBOV proteins using an RNAi assay initiated by exogenously delivered small interfering RNAs (siRNAs) against either an EBOV or a reporter gene. In addition to viral protein 35 (VP35), we found that VP30 and VP40 independently act as SRSs. Here, we present the molecular mechanisms of VP30 and VP35. VP30 interacts with Dicer independently of siRNA and with one Dicer partner, TRBP, only in the presence of siRNA. VP35 directly interacts with Dicer partners TRBP and PACT in an siRNA-independent fashion and in the absence of effects on interferon (IFN). Taken together, our findings elucidate a new mechanism of RNAi suppression that extends beyond the role of SRSs in double-stranded RNA (dsRNA) binding and IFN antagonism. The presence of three suppressors highlights the relevance of host RNAi-dependent antiviral immunity in EBOV infection and illustrates the importance of RNAi in shaping the evolution of RNA viruses.  相似文献   

8.
BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone.  相似文献   

9.
10.
Silencing gene expression by small interfering RNAs (siRNAs) has become a powerful tool for the genetic analysis of many animals. However, the rapid degradation of siRNA and the limited duration of its action in vivo have called for an efficient delivery technology. Here, we describe that siRNA complexed with a synthetic collagen poly(Pro‐Hyp‐Gly) (SYCOL) is resistant to nucleases and is efficiently transferred into cells in vitro and in vivo, thereby allowing long‐term gene silencing in vivo. We found that the SYCOL‐mediated local application of siRNA targeting myostatin, coding a negative regulator of skeletal muscle growth, in mouse skeletal muscles, caused a marked increase in the muscle mass within a few weeks after application. Furthermore, in vivo administration of an anti‐luciferase siRNA/SYCOL complex partially reduced luciferase expression in xenografted tumors in vivo. These results indicate a SYCOL‐based non‐viral delivery method could be a reliable simple approach to knockdown gene expression by RNAi in vivo as well as in vitro.  相似文献   

11.
Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and PACT form a triple complex with Dicer and facilitate the production of small interfering RNA (siRNA) by Dicer. Knockdown of both TRBP and PACT in cultured cells leads to significant inhibition of gene silencing mediated by short hairpin RNA but not by siRNA, suggesting that TRBP and PACT function primarily at the step of siRNA production. Taken together, these findings indicate that human TRBP and PACT directly interact with each other and associate with Dicer to stimulate the cleavage of double-stranded or short hairpin RNA to siRNA. Our work significantly alters the current model for the assembly and function of the Dicer-containing complex that generates siRNA and micro-RNA in human.  相似文献   

12.
APA (aminopeptidase A; EC 3.4.11.7) is a membrane-bound zinc metallopeptidase, also activated by Ca(2+), involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure in hypertensive animals. In the present study, in the three-dimensional model of the ectodomain of mouse APA, we docked the specific APA inhibitor glutamate phosphonate, in the presence of Ca(2+). The model showed the presence of one Ca(2+) atom in an hydrophilic pocket corresponding to the S1 subsite in which the lateral chain of the inhibitor is pointing. In this pocket, the Ca(2+) atom was hexaco-ordinated with the acidic side chains of Asp(213) and Asp(218), the carbonyl group of Glu(215) and three water molecules, one of them being engaged in a hydrogen bond with the negatively charged carboxylate side chain of the inhibitor. Mutagenic replacement of Asp(213) and Asp(218) with a conservative residue maintained the ability of mutated APAs to be activated by Ca(2+). However, the replacement by a non-conservative residue abolished this property, demonstrating the crucial role of these residues in Ca(2+) binding. We also showed the involvement of these residues in the strict specificity of APA in the presence of Ca(2+) for N-terminal acidic residues from substrates or inhibitors, since mutagenic replacement of Asp(213) and Asp(218) induced a decrease of the inhibitory potencies of inhibitors homologous with acidic residues. Finally, this led to the rational design of a new potent APA inhibitor, NI926 (K(i)=70 nM), which allowed us to precisely localize Asp(213) at the entrance and Asp(218) at the bottom of the S1 subsite. Taken together, these data provide new insight into the organization and functional role of the APA S1 subsite and will allow the design of pharmacophore of the inhibitor, helpful for the development of a new generation of APA inhibitors as central-acting antihypertensive agents.  相似文献   

13.
14.
15.
16.
MOTIVATION: We recently introduced a multivariate approach that selects a subset of predictive genes jointly for sample classification based on expression data. We tested the algorithm on colon and leukemia data sets. As an extension to our earlier work, we systematically examine the sensitivity, reproducibility and stability of gene selection/sample classification to the choice of parameters of the algorithm. METHODS: Our approach combines a Genetic Algorithm (GA) and the k-Nearest Neighbor (KNN) method to identify genes that can jointly discriminate between different classes of samples (e.g. normal versus tumor). The GA/KNN method is a stochastic supervised pattern recognition method. The genes identified are subsequently used to classify independent test set samples. RESULTS: The GA/KNN method is capable of selecting a subset of predictive genes from a large noisy data set for sample classification. It is a multivariate approach that can capture the correlated structure in the data. We find that for a given data set gene selection is highly repeatable in independent runs using the GA/KNN method. In general, however, gene selection may be less robust than classification. AVAILABILITY: The method is available at http://dir.niehs.nih.gov/microarray/datamining CONTACT: LI3@niehs.nih.gov  相似文献   

17.
18.
19.
20.
The composition, temporal and spatial distribution, and productivity of profundal benthos were investigated in a Colorado Front Range reservoir which impounds water diverted from the Western Slope of the Rocky Mountains. Horsetooth Reservoir, 10.6 km × 1.0 km, consists of three basins with depths greater than 50 m connected by two equalizing channels ca. 30 m deep. Water quality parameters did not vary significantly between sites, but temperature, pH, and dissolved oxygen varied seasonally. The composition and organic content of sediment exhibited a gradient from inlet to outlet which significantly influenced faunal density and distribution patterns. Although 28 genera of macroinvertebrates were collected, the oligochaetes Tubifex tubifex (Müller) and Limnodrilus hoffmeisteri Claparède comprised 97.6% of the total organisms. Chironomids comprised 2.2%. The relative contribution of chironomids to total biomass decreased with increasing depth; the reverse was true for oligochaetes. Mean annual density ranged from 3,827 to 51,901 total organisms/m2 for six sampling sites. Mean annual biomass varied from 0.16 to 2.3 g ash-free dry wt/m2. Annual turnover ratios ranged from 3.6 to 4.5. Annual production estimates varied from 7.2 to 82.8 kg/ha ash-free dry weight, averaging 39.3 kg/ha or 26.9 kcal/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号