首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of fimbriae is a complex process requiring multiple genes which are generally found clustered on the chromosome. In Bordetella pertussis, only major fimbrial subunit genes have been identified, and no evidence has yet been found that they are located in a fimbrial gene cluster. To locate additional genes involved in the biosynthesis of B. pertussis fimbriae, we used TnphoA mutagenesis. A PhoA+ mutant (designated B176) was isolated which was affected in the production of both serotype 2 and 3 fimbriae. Cloning and sequencing of the DNA region harbouring the transposon insertion revealed the presence of at least three additional fimbrial genes, designated fimB, fimC and fimD. The transposon was found to be located in fimD. Analysis of PhoA activity indicated that the fimbrial gene cluster was positively regulated by the bvg locus. A potential binding site for BvgA was observed upstream of fimB. FimB showed homology with the so-called chaperone-like fimbrial proteins, while FimC was homologous with a class of fimbrial proteins located in the outer membrane and presumed to be involved in transport and anchorage of fimbrial subunits. An insertion mutation in fimB abolished the expression of fimbrial subunits, implicating this gene in the biosynthesis of both serotype 2 and 3 fimbriae. Upstream of fimB a pseudogene (fimA) was observed which showed homology with the three major fimbrial subunit genes, fim2, fim3 and fimX. The construction of a phylogenetic tree suggested that fimA may be the primordial major fimbrial subunit gene from which the other three were derived by gene duplication. Interestingly, the fimbrial gene cluster was found to be located directly downstream from the gene coding for the filamentous haemagglutinin, an important B. pertussis adhesin, possibly suggesting co-operation between the two loci in the pathogenesis of pertussis.  相似文献   

2.
Abstract Ovine footrot is a debilitating and highly infectious disease that is primarily caused by the Gram-negative, anaerobic bacterium Dichelobacter nodosus . The major antigens implicated in virulence are the type IV fimbriae and extracellular proteases. The fimbriae show sequence and structural similarity to other type IV fimbriae, this similarity extends to genes that are involved in fimbrial biogenesis. Several acidic and basic extracellular serine proteases are produced by both virulent and benign isolates of D. nodosus . Subtle functional differences in these proteases appear to be important in virulence. In addition, there are two chromosomal regions that have a genotypic association with virulence. The partially duplicated and rearranged vap regions appear to have arisen from the insertion of a plasmid into a tRNA gene via an integrase-mediated site-specific insertion event. The 27 kb vrl region has several genes often found on bacteriophages and has inserted into an ssrA gene that may have a regulatory role in the cell. The determination of the precise role that each of these genes and gene regions has in virulence awaits the development of methods for the genetic analysis and manipulation of D. nodosus .  相似文献   

3.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

4.
5.
The FasD protein is essential for the biogenesis of 987P fimbriae of Escherichia coli. In this study, subcellular fractionation was used to demonstrate that FasD is an outer membrane protein. In addition, the accessibility of FasD to proteases established the presence of surface-exposed FasD domains on both sides of the outer membrane. The fasD gene was sequenced, and the deduced amino acid sequence was shown to share homologous domains with a family of outer membrane proteins from various fimbrial systems. Similar to porins, fimbrial outer membrane proteins are relatively polar, lack typical hydrophobic membrane-spanning domains, and posses secondary structures predicted to be rich in turns and amphipathic beta-sheets. On the basis of the experimental data and structural predictions, FasD is postulated to consist essentially of surface-exposed turns and loops and membrane-spanning interacting amphipathic beta-strands. In an attempt to test this prediction, the fasD gene was submitted to random in-frame linker insertion mutagenesis. Preliminary experiments demonstrated that it was possible to produce fasD mutants, whose products remain functional for fimbrial export and assembly. Subsequently, 11 fasD alleles, containing linker inserts encoding beta-turn-inducing residues, were shown to express functional proteins. The insertion sites were designated permissive sites. The inserts used are expected to be least detrimental to the function of FasD when they are inserted into surface-exposed domains not directly involved in fimbrial export. In contrast, FasD is not expected to accommodate such residues in its amphipathic beta-strands without being destabilized in the membrane and losing function. All permissive sites were sequenced and shown to be located in or one residue away from predicted turns. In contrast, 5 of 10 sequenced nonpermissive sites were mapped to predicted amphipathic beta-strands. These results are consistent with the structural predictions for FasD.  相似文献   

6.
7.
Bacteroides nodosus is the primary causative agent of ovine foot rot. Virulent isolates of this bacterium contain fimbriae which appear to play a major role in both infectivity and protective immunity. This paper presents the cloning and expression in Escherichia coli of the gene encoding the structural subunit of the fimbriae of B. nodosus. Total DNA was isolated from B. nodosus VCS 1001 (serogroup A), digested with HindIII, and inserted into the positive-selection vector pTR262. Recombinant E. coli clones were screened directly with anti-fimbrial antiserum by using a colony immunoassay. Several positive colonies were identified, each of which contained the same 5.5-kilobase HindIII insert. The prototype has been designated pBA101. Some clones also contained additional flanking sequences from the B. nodosus genome. Western transfer analyses verified that the positive clones were producing the B. nodosus fimbrial structural subunit, molecular weight ca. 17,500. The level of expression of the antigen in E. coli was comparable to that in B. nodosus itself and was unaffected by the insertion site or orientation of the cloned fragment, indicating that synthesis was being directed from an internal promoter. Restriction mapping and deletion analyses localized the fimbrial subunit gene to the vicinity of a PvuII site near the central region of the original HindIII insert. The expressed antigen was located in the membrane-cell wall fraction and may be exposed on the surface of the recombinant E. coli cells.  相似文献   

8.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

9.

Background

Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized.

Results

In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain.

Conclusion

Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.  相似文献   

10.
We previously reported the existence of two different kinds of fimbriae expressed by Porphyromonas gingivalis ATCC 33277. In this study, we isolated and characterized a secondary fimbrial protein from strain FPG41, a fimA-inactivated mutant of P. gingivalis 381. FPG41 was constructed by a homologous recombination technique using a mobilizable suicide vector, and failed to express the long fimbriae (41-kDa fimbriae) that were produced on the cell surface of P. gingivalis 381. However, short fimbrial structures were observed on the cell surface of FPG41 by electron microscopy. The fimbrial protein was purified from FPG41 by DEAE-Sepharose CL-6B column chromatography. The secondary fimbrial protein was eluted at 0.15 M NaCl, and the molecular mass of this protein was approximately 53 kDa as estimated by SDS-PAGE. An antibody against the 53-kDa fimbrial protein reacted with the short fimbriae of the FPG41 and the wild-type strain. However, the 41-kDa long fimbriae of the wild-type strain and the 67-kDa fimbriae of ATCC 33277 did not react with the same antibody. Moreover, the N-terminal amino acid sequence of the 53-kDa fimbrial protein showed only 2 of 15 residues that were identical to those of the 41-kDa fimbrial protein. These results show that the properties of the 53-kDa fimbriae are different from those of the 67-kDa fimbriae of ATCC 33277 as well as those of the 41-kDa fimbriae.  相似文献   

11.
Combining sites of bacterial fimbriae   总被引:1,自引:0,他引:1  
The few known crystal structures of receptor-binding domains of fimbrial tip adhesins, FimH, PapGII, and F17G, tell us that each of these structures is unique and surprising. Despite little to no sequence identity, common to them all is their variable immunoglobulin (Ig)-fold. Nevertheless, their glycan-binding sites have evolved in different locations onto this similar scaffold, and with distinct, highly specific binding properties. Difficult to capture is the often dominant role played by the fimbrial shaft in host cell recognition and biofilm formation. The major pilin FaeG, building up the shaft of F4 fimbriae, also harbors the carbohydrate receptor-binding property and has thereto an enlarged Ig-domain, with the insertion of two beta-strands and two alpha-helices. Bordetella and CFA/I fimbriae combine a tip adhesin with major subunit adhesins. Still other fimbriae incorporate a specialized invasin at the very tip of polyadhesive fibers for uptake of bacteria in cells of the immune system and host epithelia. Finally, glycan recognition by fimbrial adhesins has often been found to coincide with the binding of cell-surface integrins and components of the extracellular matrix, such as collagen IV and laminin.  相似文献   

12.
Fimbrial production by Porphyromonas gingivalis was inactivated by insertion-duplication mutagenesis, using the cloned gene for the P. gingivalis major fimbrial subunit protein, fimA. by several criteria, this insertion mutation rendered P. gingivalis unable to produce fimbrilin or an intact fimbrial structure. A nonfimbriated mutant, DPG3, hemagglutinated sheep erythrocytes normally and was unimpaired in the ability to coaggregate with Streptococcus gordonii G9B. The cell surface hydrophobicity of DPG3 was also unaffected by the loss of fimbriae. However, DPG3 was significantly less able to bind to saliva-coated hydroxyapatite than wild-type P. gingivalis 381. This suggested that P. gingivalis fimbriae are important for adherence of the organism to saliva-coated oral surfaces. Further, DPG3 was significantly less able to cause periodontal bone loss in a gnotobiotic rat model of periodontal disease. These observations are consistent with other data suggesting that P. gingivalis fimbriae play an important role in the pathogenesis of human periodontal disease.  相似文献   

13.
Type 1 fimbriae of enterobacteria are heteropolymeric organelles of adhesion composed of FimH, a mannose-binding lectin, and a shaft composed primarily of FimA. We compared the binding activities of recombinant clones expressing type 1 fimbriae from Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium for gut and uroepithelial cells and for various soluble mannosylated proteins. Each fimbria was characterized by its capacity to bind particular epithelial cells and to aggregate mannoproteins. However, when each respective FimH subunit was cloned and expressed in the absence of its shaft as a fusion protein with MalE, each FimH bound a wide range of mannose-containing compounds. In addition, we found that expression of FimH on a heterologous fimbrial shaft, e.g. K. pneumoniae FimH on the E. coli fimbrial shaft or vice versa, altered the binding specificity of FimH such that it closely resembled that of the native heterologous type 1 fimbriae. Furthermore, attachment to and invasion of bladder epithelial cells, which were mediated much better by native E. coli type 1 fimbriae compared with native K. pneumoniae type 1 fimbriae, were found to be dependent on the background of the fimbrial shaft (E. coli versus K. pneumoniae) rather than the background of the FimH expressed. Thus, the distinct binding specificities of different enterobacterial type 1 fimbriae cannot be ascribed solely to the primary structure of their respective FimH subunits, but are also modulated by the fimbrial shaft on which each FimH subunit is presented, possibly through conformational constraints imposed on FimH by the fimbrial shaft. The capacity of type 1 fimbrial shafts to modulate the tissue tropism of different enterobacterial species represents a novel function for these highly organized structures.  相似文献   

14.
Type 4 fimbriae of Pseudomonas aeruginosa are surface filaments involved in host colonization. They mediate both attachment to host epithelial cells and flagella-independent twitching motility. Four additional genes, pilW, pilX, pilY1 and pilY2, are located on Spel fragment E in the 5 kb intergenic region between the previously characterized genes pilV and pilE, which encode prepilin-like proteins involved in type 4 fimbrial biogenesis. The phenotypes of a transposon insertion and other mutations constructed by allelic exchange show that these genes are involved in the assembly of type 4 fimbriae. The PilW and PilX proteins are membrane located, possess the hydrophobic N-terminus characteristic of prepilin-like proteins, and appear to belong to the GspJ and GspK group of proteins that are required for protein secretion in a wide range of Gram-negative bacteria. These findings increase the similarities between the fimbrial biogenesis and the Gsp-based protein-secretion super-systems. PilY1 is a large protein with C-terminal homology to the PilC2 protein of Neisseria gonorrhoeae, thought to be a fimbrial tip-associated adhesin, and which, like PilY1, is involved in fimbrial assembly. PilY1 appears to be located in both the membrane and the external fimbrial fractions. PilY2 is a small protein that appears to play a subtle role In fimbrial biogenesis and represents a new class of protein.  相似文献   

15.

Background

Fimbriae are bacterial cell surface organelles involved in the pathogenesis of many bacterial species, including Gallibacterium anatis, in which a F17-like fimbriae of the chaperone-usher (CU) family was recently shown to be an important virulence factor and vaccine candidate. To reveal the distribution and variability of CU fimbriae 22 genomes of the avian host-restricted bacteria Gallibacterium spp. were investigated. Fimbrial clusters were classified using phylogeny-based and conserved domain (CD) distribution-based approaches. To characterize the fimbriae in depth evolutionary analysis and in vitro expression of the most prevalent fimbrial clusters was performed.

Results

Overall 48 CU fimbriae were identified in the genomes of the examined Gallibacterium isolates. All fimbriae were assigned to γ4 clade of the CU fimbriae of Gram-negative bacteria and were organized in four-gene clusters encoding a putative major fimbrial subunit, a chaperone, an usher and a fimbrial adhesin. Five fimbrial clusters (Flf-Flf4) and eight conserved domain groups were defined to accommodate the identified fimbriae. Although, the number of different fimbrial clusters in individual Gallibacterium genomes was low, there was substantial amino acid sequence variability in the major fimbrial subunit and the adhesin proteins. The distribution of CDs among fimbrial clusters, analysis of their flanking regions, and evolutionary comparison of the strains revealed that Gallibacterium fimbrial clusters likely underwent evolutionary divergence resulting in highly host adapted and antigenically variable fimbriae. In vitro, only the fimbrial subunit FlfA was expressed in most Gallibacterium strains encoding this protein. The absence or scarce expression of the two other common fimbrial subunits (Flf1A and Flf3A) indicates that their expression may require other in vitro or in vivo conditions.

Conclusions

This is the first approach establishing a systematic fimbria classification system within Gallibacterium spp., which indicates a species-wide distribution of γ4 CU fimbriae among a diverse collection of Gallibacterium isolates. The expression of only one out of up to three fimbriae present in the individual genomes in vitro suggests that fimbriae expression in Gallibacterium is highly regulated. This information is important for future attempts to understand the role of Gallibacterium fimbriae in pathogenesis, and may prove useful for improved control of Gallibacterium infections in chickens.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1093) contains supplementary material, which is available to authorized users.  相似文献   

16.
Type 1 fimbriae and flagella have been previously shown to contribute to the virulence of uropathogenic Escherichia coli (UPEC) within the urinary tract. In this study, the relationship between motility and type 1 fimbrial expression was tested for UPEC strain CFT073 by examining the phenotypic effect of fimbrial expression on motility and the effect that induction of motility has on type 1 fimbrial expression. While constitutive expression of type 1 fimbriae resulted in a significant decrease in motility and flagellin expression (P < 0.0001), a loss of type 1 fimbrial expression did not result in increased motility. Additionally, hypermotility and flagellar gene over- and underexpression were not observed to affect the expression of type 1 fimbriae. Hence, it appeared that the relationship between type 1 fimbrial expression and motility is unidirectional, where the overexpression of type 1 fimbriae dramatically affects motility and flagellum expression but not vice versa. Moreover, the constitutive expression of type 1 fimbriae in UPEC cystitis isolate F11 and the laboratory strain E. coli K-12 MG1655 also resulted in decreased motility, suggesting that this phenomenon is not specific to CFT073 or UPEC in general. Lastly, by analyzing the repression of motility caused by constitutive type 1 fimbrial expression, it was concluded that the synthesis and presence of type 1 fimbriae at the bacterial surface is only partially responsible for the repression of motility, as evidenced by the partial restoration of motility in the CFT073 fim L-ON DeltafimAICDFGH mutant. Altogether, these data provide further insight into the complex interplay between type 1 fimbrial expression and flagellum-mediated motility.  相似文献   

17.
Studies on the ribosomal RNA operons of Listeria monocytogenes   总被引:3,自引:0,他引:3  
Mannose-resistant hemagglutinating fimbrial antigen F165 is produced by Escherichia coli strains associated with septicemia in piglets and calves. A fimbrial component with an M(r) of 17,200 as determined by SDS-PAGE was purified to homogeneity from F165-positive E. coli strain 4787 of serogroup O115. This fimbrial component of F165 antigen was named F165(2). Separation procedures included fast protein liquid chromatography with a Superose 12 column followed by ultracentrifugation and 0.15 M ethanolamine buffer (pH 10.5) dissociation. Upon removal of ethanolamine, the fimbrial component reassociated into fimbriae. Amino acid composition analysis indicated that the fimbrial component molecule comprised 158 amino acid residues of which 37.3% were hydrophobic. The amino acid composition and the isoelectric point (9.5) were readily distinguishable from those of F1 fimbriae. The amino acid sequence was determined for approximately 40% of the molecule. For the first 33 residues, the F165(2) sequence was identical to that of F1B fimbriae and very similar to that of F1C. Fimbriae F165(2) could nevertheless be differentiated antigenically from F1C fimbriae as demonstrated by the immunodot technique using cross-absorbed antisera.  相似文献   

18.
The genetic organization of the foc gene cluster has been studied; six genes involved in the biogenesis of F1C fimbriae were identified. focA encodes the major fimbrial subunit, focC encodes a product that is indispensable for fimbria formation, focG and focH encode minor fimbrial subunits, and focI encodes a protein which shows similarities to the subunit protein FocA. Apart from the FocA major subunits, purified F1C fimbriae contain at least two minor subunits, FocG and FocH. Minor proteins of similar size were observed in purified S fimbriae. Remarkably, some mutations in the foc gene cluster result in an altered fimbrial morphology, i.e., rigid stubs or long, curly fimbriae.  相似文献   

19.
We have chemically synthesized oligopeptides corresponding to the NH2-terminal stretch of two gene products, designated FimG and FimH, of the fim gene cluster of Escherichia coli. These synthetic peptides, designated S-T1FimG(1-16) and S-T1FimH(1-25)C, evoked antibodies in rabbits that reacted with 14- and 29-kilodalton subunits, respectively, of dissociated fimbriae encoded by the recombinant plasmid pSH2 carrying the genetic information for the synthesis and expression of functional type 1 fimbriae. Neither of these fimbrial proteins was detected in dissociated fimbrial preparations from nonadhesive E. coli cells carrying the mutant plasmid pUT2002, containing a restriction site-specific deletion of fimG and fimH. Anti-S-T1FimH(1-25)C inhibited the adherence of type 1 fimbriated E. coli to epithelial cells. Immunoelectron microscopy revealed that anti-S-T1FimH(1-25)C, but not anti-S-T1FimG(1-16), bound to intact type 1 fimbriae of E. coli at the fimbrial tips and at long intervals along the fimbrial filaments. Anti-S-T1FimG(1-16) appeared to be directed at epitopes not accessible on the intact fimbriae and consequently failed to bind to intact fimbriae or to block fimbrial attachment. Our results suggest that the fimG and fimH gene products are components of type 1 fimbriae and that FimH may be the tip adhesin mediating the binding of type 1 fimbriated E. coli to D-mannose residues on mucosal surfaces.  相似文献   

20.
Molecular cloning from a plasmid encoding colonization factor antigen I (CFA/I) and heat-stable enterotoxin isolated two regions, 1 and 2, that are required for the production of CFA/I fimbriae. The level of CFA/I synthesis measured by ELISA was similar in an Escherichia coli K12 strain carrying regions 1 and 2 cloned separately on compatible plasmid vectors to that in the same strain containing the parental plasmid. The structural gene for the CFA/I fimbrial subunit was within region 1. This region directed production in E. coli minicells of at least six independent polypeptides, of which the fimbrial subunit and at least three others appeared to be synthesized as precursor molecules that underwent processing. Cloned DNA containing CFA/I region 2 specified three polypeptides in minicells. Attempts to reduce the size of the cloned region 1 resulted in a derivative plasmid that carried the CFA/I structural gene but did not complement a region-2 recombinant plasmid to restore production of CFA/I fimbriae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号