首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gene transfer between separate lineages of a bacterial pathogen can promote recombinational divergence and the emergence of new pathogenic variants. Temperate bacteriophages, by virtue of their ability to carry foreign DNA, are potential key players in this process. Our previous work has shown that representative strains of Salmonella typhimurium (LT2, ATCC14028 and SL1344) are lysogenic for two temperate bacteriophages: Gifsy-1 and Gifsy-2. Several lines of evidence suggested that both elements carry genes that contribute to Salmonella virulence. One such gene, on the Gifsy-2 prophage, codes for the [Cu, Zn] superoxide dismutase SodCI. Other putative pathogenicity determinants were uncovered more recently. These include genes for known or presumptive type III-translocated proteins and a locus, duplicated on both prophages, showing sequence similarity to a gene involved in Salmonella enteropathogenesis (pipA). In addition to Gifsy-1 and Gifsy-2, each of the above strains was found to harbour a specific set of prophages also carrying putative pathogenicity determinants. A phage released from strain LT2 and identified as phage Fels-1 carries the nanH gene and a novel sodC gene, which was named sodCIII. Strain ATCC14028 releases a lambdoid phage, named Gifsy-3, which contains the phoP/phoQ-activated pagJ gene and the gene for the secreted leucine-rich repeat protein SspH1. Finally, a phage specifically released from strain SL1344 was identified as SopEPhi. Most phage-associated loci transferred efficiently between Salmonella strains of the same or different serovars. Overall, these results suggest that lysogenic conversion is a major mechanism driving the evolution of Salmonella bacteria.  相似文献   

2.
Lipid A, a potent endotoxin which can cause septic shock, anchors lipopolysaccharide (LPS) into the outer leaflet of the outer membrane of gram-negative bacteria. MsbB acylates (KDO)(2)-(lauroyl)-lipid IV-A with myristate during lipid A biosynthesis. Reports of knockouts of the msbB gene describe effects on virulence but describe no evidence of growth defects in Escherichia coli K-12 or Salmonella. Our data confirm the general lack of growth defects in msbB E. coli K-12. In contrast, msbB Salmonella enterica serovar Typhimurium exhibits marked sensitivity to galactose-MacConkey and 6 mM EGTA media. At 37 degrees C in Luria-Bertani (LB) broth, msbB Salmonella cells elongate, form bulges, and grow slowly. msbB Salmonella grow well on LB-no salt (LB-0) agar; however, under specific shaking conditions in LB-0 broth, many msbB Salmonella cells lyse during exponential growth and a fraction of the cells form filaments. msbB Salmonella grow with a near-wild-type growth rate in MSB (LB-0 containing Mg(2+) and Ca(2+)) broth (23 to 42 degrees C). Extragenic compensatory mutations, which partially suppress the growth defects, spontaneously occur at high frequency, and mutants can be isolated on media selective for faster growing derivatives. One of the suppressor mutations maps at 19.8 centisomes and is a recessive IS10 insertional mutation in somA, a gene of unknown function which corresponds to ybjX in E. coli. In addition, random Tn10 mutagenesis carried out in an unsuppressed msbB strain produced a set of Tn10 inserts, not in msbB or somA, that correlate with different suppressor phenotypes. Thus, insertional mutations, in somA and other genes, can suppress the msbB phenotype.  相似文献   

3.
Strains ATCC 14028 and SL1344 of Salmonella enterica serovar Typhimurium are more virulent than LT2 in the BALB/c mouse model. Virulence plasmid swapping between strains ATCC 14208, LT2, and SL1344 does not alter their competitive indexes during mouse infection, indicating that the three plasmids are functionally equivalent, and that their contribution to virulence is independent from the host background. Strains ATCC 14028 and LT2 are more efficient than SL1344 as conjugal donors of the virulence plasmid. Virulence plasmid swapping indicates that reduced ability of conjugal transfer is a property of the SL1344 plasmid, not of the host strain. An A→V amino acid substitution in the TraG protein appears to be the major cause that reduces conjugal transfer in the virulence plasmid of SL1344. Additional sequence differences in the tra operon are found between the SL1344 plasmid and the ATCC 14028 and LT2 plasmids. Divergence in the tra operon may reflect the occurrence of genetic drift either after laboratory domestication or in the environment. The latter might provide evidence that possession of conjugal transfer functions is a neutral trait in Salmonella populations, a view consistent with the abundance of Salmonella isolates whose virulence plasmids are non-conjugative.  相似文献   

4.
Genetic Mapping of Is200 Copies in SALMONELLA TYPHIMURIM Strain Lt2   总被引:9,自引:2,他引:7       下载免费PDF全文
Stephen Lam  John R. Roth 《Genetics》1983,105(4):801-811
The wild-type Salmonella typhimurium strain LT2 contains six copies of the insertion sequence element IS200 which is unique to Salmonella. We have determined the chromosomal locations of all six copies of IS200 in strain LT2. This was done by mapping the positions of Tn10 elements inserted near each copy of IS200. Such Tn10 insertions were detected by Southern hybridization as IS200-containing restriction fragments with altered electrophoretic mobility. The copies are located at quite evenly spaced sites in the chromosome. Some are found in regions with many known genes; others are in regions with few known functions. There is no indication of a possible function for IS200. The method described here should be applicable to the mapping of IS elements in general.  相似文献   

5.
Mutations in pmrA were recombined into Salmonella strain ATCC 14028 msbB to determine if pmrA-regulated modifications of lipopolysaccharide could suppress msbB growth defects. A mutation that functions to constitutively activate pmrA [pmrA(Con)] suppresses msbB growth defects on EGTA-containing media. Lipid A structural analysis showed that Salmonella msbB pmrA(Con) strains, compared to Salmonella msbB strains, have increased amounts of palmitate and phosphoethanolamine but no aminoarabinose addition, suggesting that aminoarabinose is not incorporated into msbB lipid A. Surprisingly, loss-of-function mutations in the aminoarabinose biosynthetic genes restored EGTA and polymyxin sensitivity to Salmonella msbB pmrA(Con) strains. These blocks in aminoarabinose biosynthesis also prevented lipid A phosphoethanolamine incorporation and reduced the levels of palmitate addition, indicating previously unknown roles for the aminoarabinose biosynthetic enzymes. Lipid A structural analysis of the EGTA- and polymyxin-resistant triple mutant msbB pmrA(Con) pagP::Tn10, which contains phosphoethanolamine but no palmitoylated lipid A, suggests that phosphoethanolamine addition is sufficient to confer EGTA and polymyxin resistance on Salmonella msbB strains. Additionally, palmitoylated lipid A was observed only in wild-type Salmonella grown in the presence of salt in rich media. Thus, we correlate EGTA resistance and polymyxin resistance with phosphoethanolamine-decorated lipid A and demonstrate that the aminoarabinose biosynthetic proteins play an essential role in lipid A phosphoethanolamine addition and affect lipid A palmitate addition in Salmonella msbB strains.  相似文献   

6.
Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4) per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6) per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non-adhesive to the adhesive phenotype.  相似文献   

7.
IS200: a Salmonella-specific insertion sequence   总被引:26,自引:0,他引:26  
S Lam  J R Roth 《Cell》1983,34(3):951-960
A new IS element (IS200) has been identified in Salmonella. The sequence was identified as an IS element by the following criteria: its insertion caused the mutation hisD984; six copies of the sequence are present in strain LT2 of S. typhimurium; and transposition of the sequence has been observed on several occasions. IS200 is found in almost all Salmonella species examined but is absent from most other enteric bacteria. The specificity of this element for Salmonella (and the absence of IS1-IS4 from Salmonella) suggest that transfer of insertion sequences between bacterial groups may be less extensive than is commonly believed. Alternatively, the distribution may suggest that these elements play a selectively important role in bacteria.  相似文献   

8.
Previously, we reported extensive diversity among survivors of Salmonella enterica ssp. enterica serovar Typhimurium that were stored for four decades in sealed agar stabs. Thus raising the question: was there selection for greater fitness among eventual survivors? To address this, we cocultured archived LT2 survivors with nonarchived (parental) LT2 strains in competition experiments. Selected archived strains outgrew a nonarchived LT2 sequenced strain. Although we initially assumed this was the result of mutations empowering greater nutritional utilization, we found phage selection was also involved. Phage fels- 1 and fels- 2 in supernatants were identified by primer/PCR as a putative selective force following single plaque isolations on a prophage-free strain and testing on appropriate hosts. In confirmatory experiments, instead of coculture in Luria–Bertani requiring antibiotic marker insertions, competing strains without markers were inoculated at opposite edges of motility plates. Not only did the archived LT2 population overgrow the nonarchived LT2 population, but also clear zones appeared at edges of encounters from which phage fels- 1 and fels- 2 (but not gifsy- 1 nor gifsy- 2) were recovered. However, in competitions of an archived strain with S . Typhimurium ATCC 14028, phage emerged that had a DNA base sequence segment of prophage ST64B but the sequence differed from the reported homologous segment in ST64B.  相似文献   

9.
Widely studied Salmonella enterica serovar Typhimurium strains ATCC 14028s and SL1344 harbor a cryptic ST64B prophage unable to produce infectious virions. We found that coculturing either strain with an isogenic sibling lacking the prophage leads to the appearance of active forms of the virus. Active phage originates from reversion of a +1 frameshift mutation at a monotonous G:C run in a presumptive tail assembly pseudogene.  相似文献   

10.
Comparative genomic analysis has revealed limited strain diversity between Salmonella pathogenic and nonpathogenic isolates. Thus, some of the relative virulence and host-immune response disparities may be credited to differential gene regulation rather than gross differences in genomic content. Here we show that altered levels of Salmonella DNA adenine methylase (Dam) resulted in acute defects in virulence-associated gene expression, motility, flagellin synthesis, and bile resistance in the Salmonella pathogenic strain 14028 but not in avirulent laboratory strain LT2. The defects in motility exhibited by 14028 in response to altered Dam levels was not dependent on the presence of the regulatory protein, RpoS. The transitioning between flagellar types (phase variation) was also differentially regulated in 14028 versus LT2 in response to dam levels, resulting in distinct differences in flagellin expression states. These data suggest that differential gene regulation may contribute to the relative virulence disparities observed between Salmonella serovars that are closely related at the DNA level.  相似文献   

11.
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.  相似文献   

12.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

13.
A strain of Salmonella typimurium LT2 has been isolated which carries an insertion of approximately 700 bp in the gpt gene. The insertion in the gpt gene was shown to be the Salmonella-specific element IS200. The mutation in strain CR1 arose without selection during storage and is only the second phenotypically identified mutation caused by the insertion of IS200.  相似文献   

14.
The type strains of the 57 phage types of Salmonella virchow have been characterized by plasmid profile and by distribution of the insertion sequence IS 200 . Thirty-two strains carried plasmids and 21 profile types were identified; 17 strains were resistant to antimicrobial agents. In contrast only six of the type strains carried IS 200 elements and three patterns were identified. Within Salm. virchow phage type 31, five of 10 wild-type isolates carried plasmids and two plasmid profiles were identified; in contrast, an IS 200 element was identified in the genome of only one of these strains. It is concluded that for Salm. virchow , IS 200 is unlikely to significantly extend the degree of discrimination achieved by phage typing which may be supplemented when appropriate by plasmid profile typing.  相似文献   

15.
16.
We present evidence for the existence of two large (approximately 50 kb) excisable segments in the chromosome of Salmonella typhimurium. The two elements--designated Gifsy-1 and Gifsy-2--cover, respectively, the 57 units and the 24 units of the genetic map where they contribute indicative rare restriction sites. The two elements are closely interrelated and both contain a region of sequence similarity to the recE locus of the Rac prophage of Escherichia coli. Mutations within this region of Gifsy-1 yield the classical 'Sbc' phenotype: they suppress the recombination defect of recB mutants, apparently by activating a normally silent recE-like gene. At the same time, these 'sbcE' mutations activate a Xis-type function that promotes excision of one or other of the two elements. Predictably, curing of Gifsy-1 results in the loss of recB mutant suppression. Surprisingly, the suppressor phenotype is also lost in cells cured for Gifsy-2 even though the Gifsy-1-associated sbcE mutation is still present. Moreover, the excision frequency of Gifsy-1 drops dramatically in Gifsy-2-cured cells. Thus, both elements must co-operate in the activation of recombination and excision functions. Overall, the data presented here suggest that Gifsy-1 and Gifsy-2 are cryptic prophages. They are distinct from previously described Fels prophages. Unlike Fels, they are not specific to S. typhimurium strain LT2 since they are both also found in a virulent S. typhimurium isolate (ATCC 14028s).  相似文献   

17.
Most isolates of Salmonella enterica serovar Typhimurium contain a 90-kb virulence plasmid. This plasmid is reported to be mobilizable but nonconjugative. However, we have determined that the virulence plasmid of strains LT2, 14028, and SR-11 is indeed self-transmissible. The plasmid of strain SL1344 is not. Optimal conjugation frequency requires filter matings on M9 minimal glucose plates with a recipient strain lacking the virulence plasmid. These conditions result in a frequency of 2.9 × 10−4 transconjugants/donor. Matings on Luria-Bertani plates, liquid matings, or matings with a recipient strain carrying the virulence plasmid reduce the efficiency by up to 400-fold. Homologs of the F plasmid conjugation genes are physically located on the virulence plasmid and are required for the conjugative phenotype.  相似文献   

18.
M. Bisercic  H. Ochman 《Genetics》1993,133(3):449-454
Despite their close phylogenetic relationship, Escherichia coli and Salmonella typhimurium were long considered as having distinct classes of transposable elements maintained by either host-related factors or very restricted gene exchange. In this study, genetically diverse collections of E. coli and S. typhimurium (subgroup I) were surveyed for the presence of several classes of insertion sequences by Southern blot analysis and the polymerase chain reaction. A majority of salmonellae contained IS1 or IS3, elements originally recovered from E. coli, while IS200, a Salmonella-specific element, was present in about 20% of the tested strains of E. coli. Based on restriction mapping, the extent of sequence divergence between copies of IS200 from E. coli and S. typhimurium is on the order of that observed in comparisons of chromosomally encoded genes from these taxa. This suggests that copies of IS200 have not been recently transferred between E. coli and S. typhimurium and that the element was present in the common ancestor to both species. IS200 is polymorphic within E. coli but homogeneous among isolates of S. typhimurium, providing evidence that these species might differ in their rates of transfer and turnover of insertion sequences.  相似文献   

19.
K. R. Haack  J. R. Roth 《Genetics》1995,141(4):1245-1252
Spontaneous tandem chromosomal duplications are common in populations of Escherichia coli and Salmonella typhimurium. They range in frequency for a given locus from 10(-2) to 10(-4) and probably form by RecA-dependent unequal sister strand exchanges between repetitive sequences in direct order. Certain duplications have been observed previously to confer a growth advantage under specific selective conditions. Tandem chromosomal duplications are unstable and are lost at high frequencies, representing a readily reversible source of genomic variation. Six copies of a small mobile genetic element IS200 are evenly distributed around the chromosome of S. typhimurium strain LT2. A survey of 120 independent chromosomal duplications (20 for each of six loci) revealed that recombination between IS200 elements accounted for the majority of the duplications isolated for three of the loci tested. Duplications of the his operon were almost exclusively due to recombination between repeated IS200 elements. These data add further support to the idea that mobile genetic elements provide sequence repeats that play an important role in recombinational chromosome rearrangements, which may contribute to adaptation of bacteria to stressful conditions.  相似文献   

20.
Locations of six Tn10s, closely linked to each of the six IS200s on the genomic cleavage map of Salmonella typhimurium LT2, were determined by digestion with XbaI and BlnI and separation of the fragments by pulsed-field gel electrophoresis; the locations were then further defined by P22-mediated joint transduction. The orientation of each IS200 with respect to its linked Tn10 was determined by Southern blotting. The locations of IS200-I, IS200-III, and IS200-V were confirmed to be close to sufD, melB, and purC, as previously indicated. IS200-II is jointly transduced with cysG. IS200-IV is near fliA; the linked Tn10 is inserted in fli, making the strain nonmotile. IS200-VI is jointly transduced with aspC but not with aroA. IS200 is transposed to a seventh site in some strains, while remaining in the other six locations described above. These data indicate that genome analysis by pulsed-field gel electrophoresis can locate the positions of Tn10s with accuracy sufficient to predict P22-mediated joint transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号