首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil blue NA (Calco), a stain which colors rubber bright blue, has been used effectively in studying the distribution of rubber in several plant species. Fresh or fixed sections are cut, bleached with Javelle water or NaOCl solution, treated with 9% KOH in 95% ethanol, washed with several changes of water and finally with 95% ethanol, and stained with 0.05% oil blue NA in 70% ethanol. Sections are rinsed in 50%' ethanol, placed in 40% glycerin, and mounted in glycerin jelly.

For the detection of changes in the distribution and character of rubber in milled or ground tissues, much the same staining procedure is followed. The stained tissues usually are examined and dissected under a stereoscopic microscope, a procedure which permits rubber to be recognized by both its staining reaction and by a more specific property, elastic elongation.

A microscopic technic is presented whereby it is possible to determine approximately the relative proportion of dispersed and coagulated rubber latex in unstained tissues.  相似文献   

2.
Of 16 commercial oil-soluble dyes, not previously in common use among botanists, eight (including oil blue NA, already known as a stain for rubber) have proved better than Sudan m and Sudan IV in staining suberized deposits in orange vesicles.  相似文献   

3.
The following schedule, which combines an intense blue stain for rubber with sharply contrasting red counterstains, has been found satisfactory for use in an anatomical study of rubber deposition in guayule: Cut fresh or fixed sections about 50 to 100 % thick, transfer to 50% ethanol. Extract with acetone 5 minutes, treat with 1% NaOCl 5 minutes, saponify with 10% KOH in 95% ethanol 15 minutes, rinse 3 times with 50% ethanol, stain in oil blue NA (Calco) with safranin and Congo red 30 minutes at 55° C. Rinse in 50% ethanol 2 (or more) times to remove excess stain and mount in Karo syrup.  相似文献   

4.
Orcein, 0.5% in 50% isopropanol, 0.5-1 hr, followed by saturated oil red O in isopropanol diluted 3:2 with distilled water, 10-15 min, was used to demonstrate lipids and elastic tissue simultaneously in 10 μ frozen sections of formalin-fixed aortas of the wild African buffalo, showing atherosclerotic lesions. A comparison was made with the oil red O-aldehyde fuchsin (AF) method of Kwaan and Hopkins (Stain Techn., 39: 123-5, 1964) and the resorcin fuchsin (RF)-oil red O method of Lillie (Histopathologic Technic and Practical Histochemistry, McGraw-Hill, 1954), but both gave marked background staining by AF or RF that obscured the smaller deposits of lipid. Sudan IV could be substituted for oil red but did not demonstrate many of the finest deposits of lipids. Sudan black, in combination with orcein, AF or RF, was very satisfactory for demonstrating lipids but obscured many elastic fibres. Sudan dyes I, II, III, brown, blue, and green, with orcein, AF or RF, showed less contrast between lipids and elastic tissue or failed to stain the lipids adequately.  相似文献   

5.
Improved and reliable methods are described for staining semithin sections of plant materials fixed in glutaraldehyde-osmium and embedded in epoxy resins. One-micron sections are fixed to slides, stained with a two-solution hematoxylin procedure or with a methylene blue-azure A combination, counterstained in aqueous safranin O, cleared, and mounted permanently. Basophilic tissue components arc stained gray to black by the hematoxylin and blue or purple by the methylene blue-azure A combination; all wall structures are colored by the safranin. With the procedures recommended, stains am sharp and intense, sections arc flat, wrinkling and loss are held to a minimum, and unsightly precipitates do not form.  相似文献   

6.
Improved and reliable methods are described for staining semithin sections of plant materials fixed in glutaraldehyde-osmium and embedded in epoxy resins. One-micron sections are fixed to slides, stained with a two-solution hematoxylin procedure or with a methylene blue-azure A combination, counterstained in aqueous safranin O, cleared, and mounted permanently. Basophilic tissue components are stained gray to black by the hematoxylin and blue or purple by the methylene blue-azure A combination; cell wall structures are colored by the safranin. With the procedures recommended, stains are sharp and intense, sections are flat, wrinkling and loss are held to a minimum, and unsightly precipitates do not form.  相似文献   

7.
Pure metal 4.4',4',4'-tetxa-substituted, sulfo-, carboxy- and nitrophthalocyanines were synthesized. Mounted, deparaffinized and partially dehydrated sections of plant tissues were stained with 0.5% safranin in 50% alcohol for 5-10 min. Excess safranin was removed with a series of 70%, 95% and absolute alcohol washes. The sections were then stained for 2-3 min using metal 4,4',4',4'-phthalocyanine tetracarboxylic acid (MPTC, 0.5% (V/V) containing a few drops of dilute sodium hydroxide), metal 4,4',4',4'-tetra-sulfophthalocyanine (MPTS, 0.5% (V/V)) or metal tetranitrophthalocyanine (MPTN, 0.5% (V/V) in dimethyl sulfoxide). The sections were washed with 95%, then absolute alcohol; however, the metal tetranitrophthalocyanine section was washed only with absolute alcohol. Stained sections were treated briefly with xylene, then mounted on a coverslip. Bright peacock blue (MPTC and MPTS using Cu, Co or Ni), turquoise blue (MPTN using Cu or Ni) or parrot green (zinc phthalocyanine tetracarboxylic acid-ZnPTC, zinc phthalocyanine tetranitro derivative-ZnPTN) colors were obtained. Lignin-containing cells were stained red by safranin and the remaining cell structures were stained by the metal phthalocyanine complex with color brightness superior to that of fast green. Uniform staining, no color fading after a year, reliability, brief staining times, high color contrast (log ε = 4.0-4.9) and ease of use make this double staining combination ideal for routine use and photomicrography.  相似文献   

8.
Histological staining methods commonly used for detecting cellulose and lignin in cell walls were combined with epifluorescence microscopy to visualize differences in lignification between and within cellular elements. We tested our approach on sections of one-year-old branches of Fraxinus ornus L., Myrtus communis L., Olea europaea L., Pistacia lentiscus L. and Rhamnus alaternus L., containing both normal and tension wood. Sections were subjected to various staining techniques, viz. safranin O, safranin O/fast green FCF, and alcoholic solutions of safranin O/astra blue, according to the commonly accepted protocols. Stained and unstained sections were compared using both light and epifluorescence microscopy. Safranin O with or without counterstaining hid the strong fluorescence of vessel walls, cell corners and middle lamellae allowing the secondary wall fibers to fluoresce more clearly. Epifluorescence microscopy applied to stained sections showed more cell wall details than autofluorescence of unstained sections or white light microscopy of counterstained sections. This simple approach proved reliable and valuable for detecting differences in lignification in thick sections without the need for costly equipment.  相似文献   

9.
Rapid, onestep polychromatic staining of 0.75-1.5 μm epoxy sections of glutaraldehyde-osmium fixed tissues can be obtained with mixtures of basic fucbsin and toluidme blue O in alkaline polyethylene glycol ZOO (PEG ZOO). Sections are attached to slides by heating at 100 C for 45 seconds and stained at that temperature for 2-3 minutes with a solution consisting of PEG 200 (50 ml), 0.2 N KOH (0.75 ml), basic fuchsin (1.7 gm), and toluidine blue O (0.3 gm). Red-blue balance and selective staining of different structures can be controlled by varying the amount of toluidine blue added. After rinsing with 10% acetone and rapid drying, sections are covered with immersion oil or mounting medium and a cover-slip. Total time from cutting of a section to finished preparation is less than 6 minutes. This staining solution is stable, does not produce precipitates on the sections, and does not wrinkle or lift the sections from the slides.  相似文献   

10.
Histological staining methods commonly used for detecting cellulose and lignin in cell walls were combined with epifluorescence microscopy to visualize differences in lignification between and within cellular elements. We tested our approach on sections of one-year-old branches of Fraxinus ornus L., Myrtus communis L., Olea europaea L., Pistacia lentiscus L. and Rhamnus alaternus L., containing both normal and tension wood. Sections were subjected to various staining techniques, viz. safranin O, safranin O/fast green FCF, and alcoholic solutions of safranin O/astra blue, according to the commonly accepted protocols. Stained and unstained sections were compared using both light and epifluorescence microscopy. Safranin O with or without counterstaining hid the strong fluorescence of vessel walls, cell corners and middle lamellae allowing the secondary wall fibers to fluoresce more clearly. Epifluorescence microscopy applied to stained sections showed more cell wall details than autofluorescence of unstained sections or white light microscopy of counterstained sections. This simple approach proved reliable and valuable for detecting differences in lignification in thick sections without the need for costly equipment.  相似文献   

11.
Sections of compact bone were cut from the diaphysis of the femur, tibia, and humerus from dogs and monkeys. These sections were either ground thin and decalcified, or decalcified and subjected to frozen sectioning. Decalcification of the sections was effected by immersion in either Decal, 10% formic acid, 10% formic acid-sodium citrate (pH 4.5) or 20% aqueous EDTA. Sections were routinely stained with oil red O, Sudan black B, or Fettrot 7B. In addition, Nile blue A and phosphine 3R were also employed. Sections stained with phosphine were viewed with a fluorescence microscope. Control sections were extracted with lipid solvents prior to application of the staining procedures. The results indicate that lipid is present in compact bone within the osteocytes, lacunae, canaliculi, and organic matrix. The significance of the lipid in these sites, particularly extracellularly, is unknown.  相似文献   

12.
Selective staining with Sudan IV and methylene blue for light microscopy and scanning electron microscopy (SEM) were investigated to determine their potential for detecting and quantifying microencapsulated insecticides. Penncap-M (microencapsulated methyl parathion), Penncapthrin (microencapsulated permethrin), and Dyfonate (microencapsulated fonofos) were selectively stained with Sudan IV but not with methylene blue. Selective staining was not possible for Altosid SF-10 or SR-20 (microencapsulated methoprene) with either stain. Sudan IV enabled detection of some microencapsulated formulations in the digestive content of selected aquatic invertebrates and prepared contaminated pollen samples. Staining intensity with Sudan IV was greatest with acetone but capsular damage was high. A solvent ratio of 50:50 and 20:80 acetone/xylene minimized capsular collapse and maintained good staining intensity. The use of SEM for capsule identification and quantification depended upon the method of sample preparation: the slide smear method was superior to samples prepared by incision or microtomy. SEM was most suitable for investigation of formulations such as methoprene, for which selective staining was not possible. The chemical basis of staining with Sudan IV and potential application of both identification techniques are discussed.  相似文献   

13.
Lux A  Morita S  Abe J  Ito K 《Annals of botany》2005,96(6):989-996
BACKGROUND AND AIMS: Free-hand sectioning of living plant tissues allows fast microscopic observation of internal structures. The aim of this study was to improve the quality of preparations from roots with suberized cell walls. A whole-mount procedure that enables visualization of exo- and endodermal cells along the root axis was also established. METHODS: Free-hand sections were cleared with lactic acid saturated with chloral hydrate, and observed with or without post-staining in toluidine blue O or aniline blue. Both white light and UV light were used for observation. Lactic acid was also used as a solvent for berberine, and fluorol yellow for clearing and staining the samples used for suberin observation. This procedure was also applied to whole-mount roots with suberized celllayers. KEY RESULTS: Clearing of sections results in good image quality to observe the tissue structure and cell walls compared with non-cleared sections. The use of lactic acid as a solvent for fluorol yellow proved superior to previously used solvents such as polyethylene glycol-glycerol. Clearing and fluorescence staining of thin roots such as those of Arabidopsis thaliana were successful for suberin visualization in endodermal cells within whole-mount roots. For thicker roots, such as those of maize, sorghum or tea, this procedure could be used for visualizing the exodermis in a longitudinal view. Clearing and staining of peeled maize root segments enabled observation of endodermal cell walls. CONCLUSIONS: The clearing procedure using lactic acid improves the quality of images from free-hand sections and clearings. This method enhances the study of plant root anatomy, in particular the histological development and changes of cell walls, when used in combination with fluorescence microscopy.  相似文献   

14.
A method utilizing Carbowax 400 as the solvent for oil red O and Sudan IV is presented. This solvent fulfills all the requirements of an efficient solvent for lipid staining postulated by Chiffelle and Putt (1951) and, in addition, has several other advantages making it more practical than propylene glycol and ethylene glycol: (a) Carbowax sections are stained 3 times as fast, (b) frozen sections are stained 5 times as fast, (c) the staining solution is more readily prepared, and (d) the intensity of staining is greater.  相似文献   

15.
We investigated the effects of microwave irradiation on a safranin O staining method for paraffin sections of formalin fixed rabbit larynx. The control sections were stained according to the conventional method, and the experimental sections were stained in microwave oven for 10 sec at 360 W in Weigert's iron hematoxylin, and for 30 sec at 360 W in fast green and 0.1% safranin O staining solutions. Light microscopic examination of the sections revealed that the microwave heating did not adversely affect the staining properties of cartilage tissue compared to the conventional staining method. Small differences such as darker staining of the matrix and shrinkage of the cytoplasm was observed in some microwave treated sections. The present study revealed that microwave application can be used safely for the safranin O method with the advantage of reduced staining time.  相似文献   

16.
Serial sections cut from plant tissues embedded in Carbowax have been affixed to slides with rubber cement. A rather thick layer of undiluted rubber cement was first spread on the slides. The Carbowax ribbons were added next. Lighter-fluid, essentially petroleum ether which can be substituted for it, was then run under the sections to dissolve the rubber cement and to float the ribbons. This notation medium did not dissolve the Carbowax and the ribbons could be manipulated in it for accurate location. The slides were dried on a 45° C warming table which also helped to flatten the sections. Adhesion was best when drying times were held to 4 hr or less. All excess rubber cement was washed away with xylene immediately prior to covering and the cover slips were carefully applied with a very thin resinous mounting medium to prevent dislodging the sections. Both aqueous and alcoholic stains have been used successfully and the slides have been left in them for as long as 3 days without loss of sections. The method was developed for fluorescence microscopy but serves equally well for visible light microscopy. Slides stained with a safranin-fast green combination have been used for both purposes, the safranin staining and fluorescing in a manner similar to rhodamine B.  相似文献   

17.
Seventeen Grübler dyes produced in Germany between 1880 and 1939 were examined in this study. These dyes were: fuchsin-bacillus, diamond fuchsin, fuchsin S acid, rubin S, safranin O water soluble, safranin yellowish water soluble, methyl eosin, Sudan III, scarlet R, auramine, orange G, aniline blue, pyronin, carmine, lithium carmine, hematein and aurantia. Spectrophotometry and staining characteristics were used to determine the maximum absorbance and efficacy of each dye in common staining techniques. The spectral curves and staining characteristics of these dyes compared well with modern dyes used as controls. Fuchsin bacillus and diamond fuchsin are synonyms for basic fuchsin. Fuchsin S acid and rubin S are synonyms for acid fuchsin. The scarlet R sample was the same as the Sudan III. The two safranins were the same. The basic fuchsin samples were unsuitable for preparation of Schiff's reagent. Both basic fuchsin and pyronin samples were less concentrated than modern counterparts. It is noteworthy that the dyes worked well after up to 100 years in storage, and this observation indicates that dyes can have a long shelf life when stored in cool, dry, air-tight conditions.  相似文献   

18.
We investigated the effects of microwave irradiation on a safranin O staining method for paraffin sections of formalin fixed rabbit larynx. The control sections were stained according to the conventional method, and the experimental sections were stained in microwave oven for 10 sec at 360 W in Weigert's iron hematoxylin, and for 30 sec at 360 W in fast green and 0.1% safranin O staining solutions. Light microscopic examination of the sections revealed that the microwave heating did not adversely affect the staining properties of cartilage tissue compared to the conventional staining method. Small differences such as darker staining of the matrix and shrinkage of the cytoplasm was observed in some microwave treated sections. The present study revealed that microwave application can be used safely for the safranin O method with the advantage of reduced staining time.  相似文献   

19.
Spherosomes in plant tissue culture cells from normal sunflower stems and sunflower crown gall tumors reacted similarly to several nonfluorescent and fluorescent lipid dyes. Sudan IV and black B were good selective spherosome stains. The lipid fluorochromes, Nile blue and 3, 4-benzpyrene were excellent selective spherosome stains and visualized the smallest particles more readily than did Sudan IV. Spherosomes could not be seen in tissues stained with Sudan IV or 3,4-benzpyrene after ether-alcohol extraction. Acid phosphatase was detected on the spherosomes in both normal and tumor tissues using the lead sulfide precipitation and the post-incubation coupling procedures.  相似文献   

20.
Techniques for studying adipocytes   总被引:4,自引:0,他引:4  
Various fixatives as well as tissue and slide handling procedures have been evaluated in attempts to demonstrate adipocytes histochemically while maintaining cell and tissue integrity. The optimal procedure for analysis of immature adipose depots consists of the following steps: 1) fresh, unfixed tissues are rapidly in isopentane quenched in a liquid nitrogen bath; 2) cryostat sections are cut, removed from the knife with a room temperature slide, and then air dried for 5-10 minutes; 3) slides can be stained directly with picro-Ponceau or toluidine blue procedures or with oil red O following fixation for 30 minutes in cold (4 C) 10% formalin-CaCl2 (1.25%). For analysis of mature rat adipose depots steps 2 and 3 are modified as follows: 2) cryostat sections are removed from the knife with a cold slide (-20 C) and dried for 30 minutes at 4 C; 3) the mounted sections are stained with oil red O following fixation for 30 minutes in cold (4 C) 10% formalin-HgCl2 (2.5%). When procedures described above for immature adipose depots are combined with esterase staining, adipocyte cytoplasm is clearly demonstrated. These procedures allow the routine use of fresh frozen, unfixed cryostat sections in studies of adipose cellularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号