首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Mutants of a tomato strain ofXanthomonas campestris pv.vesicatoria (XCV), causal agent of bacterial spot of tomato and pepper, were produced using the transposon Tn5 carried in the suicide plasmid pGS9. One prototrophic mutant, M461, was isolated which caused no visible reaction on tomato or pepper, but maintained the wild-type ability to induce a hypersensitive reaction (HR) on tobacco. This mutant showed similar growth characteristics to the wild-type in culture, but growth in planta was reduced. A genomic library of wild-type XCV was constructed in the broad host range cosmid vector pLAFR3. Clone p6AD4 restored pathogenicity to M461 on tomato and the ability to induce a HR on pepper. This clone contained ca. 22 kb of XCV DNA. The insertion in M461 was in a site corresponding to a 1.1 kbEcoRI fragment of p6AD4.  相似文献   

3.
A 70 mer oligonucleotide microarray was constructed to analyze genome-wide expression profiles of Xanthomonas campestris pv. campestris B100, a plant-pathogenic bacterium that is industrially employed to produce the exopolysaccharide xanthan gum which has many applications as a stabilizing, thickening, gelling, and emulsifying agent in food, pharmaceutical, and cosmetic industries. As an application example, global changes of gene expression were monitored during growth of X. campestris pv. campestris B100 on two different carbon sources. Exponential growing bacterial cultures were incubated either for 1h or permanently in minimal medium supplemented with 1% galactose in comparison to growth in minimal medium supplemented with 1% glucose. Six genes were identified that were significantly increased in gene expression under both growth conditions. These genes were located in three distinguished chromosomal regions in operon-like gene clusters. Genes from these clusters encode secreted glycosidases, which were predicted to be specific for galactose-containing carbohydrates, as well as transport proteins probably located in the outer and inner cell membrane. Finally genes from one cluster code for cytoplasmic enzymes of a metabolic pathway specific for the breakdown of galactose to intermediates of glycolysis.  相似文献   

4.
A region of Xanthomonas campestris pv. campestris DNA containing at least two pathogenicity genes was identified. Mutants in one gene were clearly reduced in pathogenicity while mutants in the other were only moderately reduced. Both classes of mutants were prototrophic and motile, and had wild-type levels of extracellular enzymes and extracellular polysaccharide. They also grew in vitro and in planta at the same rate as the wild type. Experiments involving one of the clear pathogenicity mutants indicated that the recovery of mutant cells from turnip seedlings 24 hr after inoculation was lower than for the wild type. This may be due to cell death as a result of action by some preformed or induced plant factor. From DNA sequencing an open reading frame was identified that encompassed the site of the mutations giving a clear reduction in pathogenicity. The predicted protein sequence had no homology with other proteins in the computer data base.  相似文献   

5.
Previous studies have indicated that the yellow pigments (xanthomonadins) produced by phytopathogenic Xanthomonas bacteria are unimportant during pathogenesis but may be important for protection against photobiological damage. We used a Xanthomonas campestris pv. campestris parent strain, single-site transposon insertion mutant strains, and chromosomally restored mutant strains to define the biological role of xanthomonadins. Although xanthomonadin mutant strains were comparable to the parent strain for survival when exposed to UV light; after their exposure to the photosensitizer toluidine blue and visible light, survival was greatly reduced. Chromosomally restored mutant strains were completely restored for survival in these conditions. Likewise, epiphytic survival of a xanthomonadin mutant strain was greatly reduced in conditions of high light intensity, whereas a chromosomally restored mutant strain was comparable to the parent strain for epiphytic survival. These results are discussed with respect to previous results, and a model for epiphytic survival of X. campestris pv. campestris is presented.  相似文献   

6.
用转座子Tn5gusA5对野油菜黄单胞菌野油菜致病变种(Xanthomonas campestris pv.campestris,简称Xcc)野生型菌株8004进行诱变,分离到一批胞外多糖(EPS)合成减少的突变体。采用TAIL-PCR(thermal asymmetric interlaced PCR)分析突变体的Tn5gusA5插入位点,发现其中一株编号为151D09的突变体的插入位点位于Xcc 8004菌株的基因组编号为XC3695的ORF内,该ORF功能尚未见报道。序列分析表明,该ORF演绎的编码产物与Serratia marcescens的kdtX基因和Klebsiella pneumoniaewaaE基因演绎的编码产物分别具有52%和50%的相似性,并具有第2家族糖基转移酶的功能域, 因此暂将该ORF命名为waxE基因。用同源双交换方法构建了waxE基因的缺失突变体,并采用PCR和Southern杂交的方法对突变体进行了验证。waxE基因缺失突变体在营养丰富培养基的生长繁殖不受影响,但其EPS产量与野生型菌株8004相比,降低35%左右,并且一段PCR合成的包含waxE基因的DNA片段能反式互补waxE基因缺失突变体,恢复缺失突变体的EPS产量,表明Xcc waxE基因与EPS的生物合成有关。  相似文献   

7.
We have investigated the endogenous phosphorylation patterns of phosphorylated proteins of Xanthomonas campestris pv. oryzae induced by its bacteriophages. For bacteriophage Xp12-infected cells, at least three phosphoproteins with apparent molecular weights of 28, 28.5 and 45kDa were detected by in vitro labeling with [-32P]-ATP. These Xp12-specific phosphoproteins only occurred with Xp12 infection, and were not shown in uninfected or Xp10-infected cells. The protein kinase(s) responsible could use either ATP or GTP as the nucleotide substrate with nearly the same efficiency. Magnesium was proved to be an essential factor for the phosphorylation. EGTA treatment excluding the possibility that the presumed protein kinase was calcium-dependent. Under our reaction conditions, the optimal phosphorylation occurred at pH 7 to 8, for 30 to 40 min at 25 to 37°C. The Xp12-specific protein phosphorylation hint the existence of a physiological regulation mechanism involved in the life cycle of bacteriophage Xp12. Furthermore, the presumed protein kinase was shown to be encoded by the genome of Xp12 rather than indirectly induced by Xp12 infection.  相似文献   

8.
Black rot of cabbage caused by Xanthomonas campestris pv. campestris is one of the most important diseases of crucifers worldwide. Expression of defence-related enzymes in cabbage in response to X. campestris pv. campestris was investigated in the current experiment. Among the defence-related enzymes (phynylalanine ammonia lyase, peroxidase, polyphenol oxidase, superoxide dismutase [SOD] and chitinase) and quantity of phenolic compounds studied in the present investigation, phenylalanine ammonia lyase (PAL), the key enzyme in the phenylpropanoid pathway was the first enzyme suppressed at three days after inoculation in X. campestris pv. campestris-cabbage system. Correlation analysis indicated that PAL and phenolic compounds are the two most important compounds determining the susceptibility of cabbage to X. campestris pv. campestris. Induction of peroxidase isoform-1 (Rf value: 0.059) and SOD isoform-1 (Rf value: 0.179) three days after pathogen inoculation implicated the role of these isozymes in susceptible cabbage – X. campestris pv. campestris interaction. This study demonstrates the susceptibility of cabbage to X. campestris pv. campestris is a result of declination of PAL and phenolic contents at biochemical level as a manifestation of increase in bacterial population at the cellular level within the host tissues.  相似文献   

9.
10.
11.
Immunomagnetic fishing was developed as an improved procedure for increasing the bacterial target to non-target recovery ratio in suspensions containing mixtures of target and non-target organisms. A cell suspension containing the target Xanthomonas campestris pv. pelargonii and non-target organisms, is treated with rabbit polyclonal antiserum against X.c. pv. pelargonii and incubated for 1 h. The suspension is then mixed with paramagnetic iron oxide particles coated with goat anti-rabbit antibodies (immunomagnetic particles). After incubation, the polished surface of a 14 mm diameter neodymium supermagnet is placed at the air-water interace and the magnetic particles are attracted to the magnet. After all visible magnetic particles have attached to the bottom of the magnet, the magnet is dipped in sterile buffer to remove non-target organisms. The magnet with attached magnetic particles is rubbed evenly over an agar surface to dislodge the particles and attached bacteria. Conventional immunomagnetic isolation (immunomagnetic attraction) and immunomagnetic fishing were compared, for the recovery of the target organism in geranium leaf washings spiked with X.c. pv. pelargonii. With immunomagnetic attraction and immunomagnetic fishing, bacterial non-target organisms were reduced to 11.4 and 1.5% of the initial population, respectively, whereas the target was only reduced to 63.7 and 53.8%.  相似文献   

12.
Chung WJ  Shu HY  Lu CY  Wu CY  Tseng YH  Tsai SF  Lin CH 《Proteomics》2007,7(12):2047-2058
The bacterium Xanthomonas campestris pathovar campestris (XCC) 17 is a local isolate that causes crucifer black rot disease in Taiwan. In this study, its proteome was separated using 2-DE and the well-resolved proteins were excised, trypsin digested, and analyzed by MS. Over 400 protein spots were analyzed and 281 proteins were identified by searching the MS or MS/MS spectra against the proteome database of the closely related XCC ATCC 33913. Functional categorization of the identified proteins matched 141 (50%) proteins to 81 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, we performed a comparative proteome analysis of the pathogenic strain 17 and an avirulent strain 11A to reveal the virulence-related proteins. We detected 22 up-regulated proteins in strain 17 including the degrading enzymes EngXCA, HtrA, and PepA, which had been shown to have a role in pathogenesis in other bacteria, and an anti-host defense protein, Ohr. Thus, further functional studies of these up-regulated proteins with respect to their roles in XCC pathogenicity are suggested.  相似文献   

13.
Protein phosphorylation was studied in Xanthomonas campestris pv. oryzae in vivo and in vitro. In vitro labelling showed that the protein kinases in this bacterium used both ATP and GTP as nucleotide substrates at nearly the same efficiency. At least 6 proteins were phosphorylated in vitro, including abundant species of p81, p44, and p32 with M r of 81000, 44000, and 32000, respectively. Three types of phosphate-protein linkage were found in this bacterium: O-phosphate, N-phosphate and probably acyl phosphate. The p81 and p32 were phosphorylated at histidine. The p44 had mainly phosphoserine and a small part of phosphohistidine. The phosphorylation profile was variable depending on the growth conditions. Furthermore, by a virulent phage Xp10 infection the quantity of phosphorylation increased: for phosphohistinine more than 10-fold, and for phosphoserine about 3-fold. Thus, in this bacterium phosphorylation may be linked with a physiological regulation system and with Xp10 phage development.  相似文献   

14.
Fully sequenced genomes of Xanthomonas campestris pv. campestris (Xcc) strains are reported. However, intra‐pathovar differences are still intriguing and far from clear. In this work, the contrasting virulence between two isolates of Xcc ‐ Xcc51 (more virulent) and XccY21 (less virulent) is evaluated by determining their pan proteome profiles. The bacteria are grown in NYG and XVM1 (optimal for induction of hrp regulon) broths and collected at the max‐exponential growth phase. Shotgun proteomics reveals a total of 329 proteins when Xcc isolates are grown in XVM1. A comparison of both profiles reveals 47 proteins with significant abundance fluctuations, out of which, 39 show an increased abundance in Xcc51 and are mainly involved in virulence/adaptation mechanisms, genetic information processing, and membrane receptor/iron transport systems, such as BfeA, BtuB, Cap, Clp, Dcp, FyuA, GroEs, HpaG, Tig, and OmpP6. Several differential proteins are further analyzed by qRT‐PCR, which reveals a similar expression pattern to the protein abundance. The data shed light on the complex Xcc pathogenicity mechanisms and point out a set of proteins related to the higher virulence of Xcc51. This information is essential for the development of more efficient strategies aiming at the control of black rot disease.  相似文献   

15.
在十字花科黑腐病菌(Xcc)中,hrp基因对寄主的致病性和非寄主的超敏反应中起核心作用,而hrpG对整个hrp基因簇起调控作用.HrpG为OmpR家族的双组分系统感受调控蛋白,含有两个结构域,分别是N端Response_reg和C端Trans reg_C.本研究利用表达载体pQE-30 Xa,成功构建了HrpG的表达重组子,在E.coli M15 [pREP4]中进行诱导表达.通过调节诱导温度、IPTG浓度和诱导时间最终确定在温度为20℃,IPTG浓度为0.8 mmol/L,诱导表达4 h.hrpG基因在宿主细胞E.coli M15获得高效可溶性表达.目前尚未有可溶性HrpG蛋白获得成功表达的报导,本研究中获得HrpG蛋白在大肠杆菌获得大量可溶性的表达,将为in vitro研究HrpG的生理活性,特异的结合位点和调控功能研究打下良好基础.  相似文献   

16.
Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.  相似文献   

17.
Xanthomonas campestris pv. graminis and X. campestris pv. phlei isolated from different grass-species were analysed for their fatty acid content with a gas-chromatograph and a commerially-available software package. The two pathovars could be rapidly and reliably identified and separated from each other with this technique, offering alternative to time-consuming identification by biochemical and pathogenicity tests.  相似文献   

18.
Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, is known for its ability to catabolize a wide range of plant compounds. This ability is correlated with the presence of specific carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) devoted to scavenging specific carbohydrates. In this study, we demonstrate that there is an X. campestris pv. campestris CUT system involved in the import and catabolism of N-acetylglucosamine (GlcNAc). Expression of genes belonging to this GlcNAc CUT system is under the control of GlcNAc via the LacI family NagR and GntR family NagQ regulators. Analysis of the NagR and NagQ regulons confirmed that GlcNAc utilization involves NagA and NagB-II enzymes responsible for the conversion of GlcNAc-6-phosphate to fructose-6-phosphate. Mutants with mutations in the corresponding genes are sensitive to GlcNAc, as previously reported for Escherichia coli. This GlcNAc sensitivity and analysis of the NagQ and NagR regulons were used to dissect the X. campestris pv. campestris GlcNAc utilization pathway. This analysis revealed specific features, including the fact that uptake of GlcNAc through the inner membrane occurs via a major facilitator superfamily transporter and the fact that this amino sugar is phosphorylated by two proteins belonging to the glucokinase family, NagK-IIA and NagK-IIB. However, NagK-IIA seems to play a more important role in GlcNAc utilization than NagK-IIB under our experimental conditions. The X. campestris pv. campestris GlcNAc NagR regulon includes four genes encoding TonB-dependent active transporters (TBDTs). However, the results of transport experiments suggest that GlcNAc passively diffuses through the bacterial envelope, an observation that calls into question whether GlcNAc is a natural substrate for these TBDTs and consequently is the source of GlcNAc for this nonchitinolytic plant-associated bacterium.Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, produces extracellular plant cell wall-degrading enzymes which contribute to its pathogenicity by facilitating its spread through plant tissues and give the bacterium access to a ready source of nutrients via the carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) (7, 16, 35). The CUT loci are characterized by the presence of genes encoding regulators, degradative enzymes, inner membrane transporters, and outer membrane TonB-dependent transporters (TBDTs), which have been identified as active carbohydrate transporters (7, 33, 44). However, recently, an example of passive diffusion through a TBDT in Caulobacter crescentus was described (17). X. campestris pv. campestris has 72 TBDTs and belongs to a class of bacteria in which TBDTs are overrepresented (7). Our previous study suggested that there are several CUT loci or systems in this bacterium (7).N-Acetylglucosamine (GlcNAc) is an amino sugar that is used for the synthesis of cell surface structures in bacteria and plays an important role in supplying carbon and energy by entering the glycolytic pathway after it is converted into fructose-6-phosphate (fructose-6P) (1, 9). In a recent comparative study of bacterial GlcNAc utilization pathways and regulatory networks, Yang and coworkers identified conserved and distinct features of the GlcNAc utilization pathway in proteobacteria (48). The expression of X. campestris pv. campestris GlcNAc-specific genes was proposed to be controlled by NagR and NagQ regulators belonging to the LacI and GntR families, respectively. In X. campestris pv. campestris strain ATCC 33913, one predicted binding motif specific for NagQ (designated the NagQ box) consists of two imperfect repeats of the TGGTATT sequence separated by 4 bp and is located upstream of the nagQ gene (XCC3414) (Fig. (Fig.1A)1A) (48). This gene is part of the nag cluster and is followed by genes encoding the major facilitator superfamily (MFS) inner membrane transporter NagP (XCC3413), the regulator NagR (XCC3412), the GlcN-6P deaminase NagB-II (XCC3411), and the GlcNAc-6P deacetylase NagA (XCC3410) (Fig. (Fig.1A).1A). NagR boxes contain the palindromic sequence AATGACARCGYTGTCATT (bold type indicates less highly conserved nucleotides) and are upstream of genes encoding two glucokinase-like NagK-II proteins (XCC2886 [nagK-IIA] and XCC2943 [nagK-IIB]), as well as 5 genes encoding TBDTs (XCC0531, XCC2887, XCC3045, XCC3408, and XCC2944 located downstream of XCC2943) (Fig. (Fig.1A).1A). All of the X. campestris pv. campestris genes located downstream of NagR or NagQ boxes were proposed to belong to a GlcNAc utilization pathway involved in uptake of GlcNAc through the bacterial envelope and subsequent phosphorylation, deacetylation, and deamination, which finally leads to the common metabolic intermediate fructose-6-phosphate (Fig. (Fig.1B)1B) (48). It was recently demonstrated that in C. crescentus the TBDT CC0446 gene, which is clustered with other nag genes, is responsible for the uptake of GlcNAc (17). The presence of TBDTs in the GlcNAc regulon, which has been observed in Alteromonadales and Xanthomonadales (48), suggests that genes belonging to the GlcNAc utilization pathway define a new CUT system.Open in a separate windowFIG. 1.X. campestris pv. campestris N-acetylglucosamine (GlcNAc) utilization pathway. (A) Organization of genes in the proposed GlcNAc utilization pathway. NagR boxes are indicated by filled circles, and the NagQ box is indicated by an open circle. (B) GlcNAc is proposed to be transported through the outer membrane by TBDTs and then transported across the inner membrane by the MFS transporter NagP. GlcNAc would then be phosphorylated by nagK-II-encoded enzymes. Subsequent metabolism via the nagA-encoded (GlcNAc-6P deacetylase) and nagB-II-encoded (GlcN-6P deaminase) enzymes results in fructose 6-phosphate (Fru-6P) (48). MFS, major facilitator superfamily; PP, periplasm; TBDT, TonB-dependent transporter.Here we describe characterization of the X. campestris pv. campestris GlcNAc utilization pathway and regulatory network, which involves at least the repressors NagR and NagQ. TBDTs are associated with this pathway, confirming the presence of a GlcNAc CUT system in X. campestris pv. campestris. In this bacterium, GlcNAc entry and catabolism imply that novel families containing a GlcNAc inner membrane transporter and GlcNAc kinases are involved.  相似文献   

19.
Two monoclonal antibodies specific for lipopolysaccharide antigens of Xanthomonas campestris pv. begoniae and pv. pelargonii reacted with all of their respective pathovar strains and not with 130 strains of other xanthomonads or 89 nonxanthomonads tested. These results, as well as previous results, indicate that pathovar-specific monoclonal antibodies were readily generated to strains of X. campestris pathovars that generally infect single hosts.  相似文献   

20.
Per-ARNT-Sim (PAS) domains are important signalling modules that possibly monitor changes in various stimuli such as light. For the majority of PAS domains that have been identified by sequence similarity, the biological function of the signalling pathways has not yet been experimentally investigated.Thirty-three PAS proteins were discovered in Xanthomonas campestris pv. campestris(Xcc) by genome/proteome analysis. Thirteen PAS proteins were identified as contributing to light signalling and Xcc growth, motility or virulence using molecular genetics and bioinformatics methods. The PAS domains played important roles in light signalling to regulate the growth, motility and virulence of Xcc. They might be regulated by not only light quality (wavelength)but also quantity (intensity) as potential light-signalling components. Evaluating the light wavelength, three light-signalling types of PAS proteins in Xcc were shown to be involved in blue light signalling, tricolour (blue, red and far red)signalling or red/far-red signalling. This showed that Xcc had evolved a complicated light-signalling system to adapt to a complex environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号