首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Human alpha 2-macroglobulin (alpha 2M), a large tetrameric plasma glycoprotein, inhibits a wide spectrum of proteinases by a particular "trapping" mechanism resulting from the proteolysis of peptide bonds at specific "bait" regions. This induces the hydrolysis of four thiol esters triggering both the possible covalent bonding of the proteinases and a considerable structural change in the alpha 2M molecule, also observed following direct cleavage of the thiol esters by methylamine. By subtracting average images of electron micrographs from two populations of alpha 2M molecules in the same biochemical state (with both the four cleaved bait regions and thiol esters), but containing either two or zero chymotrypsins, we are able to demonstrate the position of the two proteinases inside the tetrameric alpha 2M molecule. The comparison of the alpha 2M molecules transformed either by immobilized chymotrypsin or methylamine shows that the proteolysis of the bait regions seems of minimal importance for the general shape of the molecule and provides a direct visualization of the actual role of the thiol esters in the conformational change.  相似文献   

2.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). The proteinase binding reaction of PZP is investigated using chymotrypsin as a model enzyme. The time-course of the interaction is studied by measuring the change in intrinsic protein fluorescence of PZP-chymotrypsin reaction mixtures as a function of time after rapid mixing in a stopped-flow apparatus. Titrations show the changes of fluorescence at equilibrium to correspond with the formation of a chymotrypsin-PZP(tetramer) species. The kinetic results show the formation of the species to take place in an overall second-order process dependent on the concentrations of chymotrypsin and of PZP(dimers), k = 5 x 10(5) M-1 x s-1. Reactions of PZP-thiol groups do not give rise to fluorescence changes. The fluorescence changes most likely reflect the formation of an intermediate with intact thiol esters. Further analysis of the kinetic results suggests that the chymotrypsin-PZP(tetramer) intermediate is formed in two reaction steps: (1) initially native PZP(dimers) are cleaved at bait regions by enzyme molecules, and that is the rate determining reaction of the fluorescence changes; (2) association with another PZP(dimer) or PZP(dimer)-chymotrypsin complex in a very fast reaction that leads to the formation of 1:1 -chymotrypsin-PZP(tetramer) intermediate, probably with intact thiol esters. The interactions studied apparently are established early in the path of the reaction and the fluorescence changes probably reflect noncovalent enzyme-PZP contacts, which are not changed when covalent binding occurs. Further, fluorescence changes are seen only in reactions of PZP with enzymes, not with methylamine.  相似文献   

3.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

4.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A monoclonal antibody was obtained from the fusion of spleen cells of mice, immunized with methylamine-treated alpha 2-macroglobulin (alpha 2M), with the myeloma cell line P3-X63-Ag8.653. A competitive binding assay demonstrated that the antibody was specific for a neoantigen expressed on alpha 2M when the inhibitor reacts with proteinases or with methylamine. When immobilized, the monoclonal antibody retained its ability to specifically bind alpha 2M-proteinase complexes or methylamine-treated alpha 2M, both of which could be quantitatively recovered from the immunoaffinity column by lowering the pH to 5.0. Binary alpha 2M-proteinase complexes of trypsin, plasmin, and thrombin, prepared by incubating large amounts of alpha 2M with a small amount of enzyme, were isolated by immunoaffinity chromatography. Each purified complex was characterized with regard to proteinase content, extent of alpha 2M subunit cleavage, extent of thiol ester hydrolysis, and extent of conformational change. Each complex contained 0.8-0.9 mol of proteinase/mol of inhibitor. In the alpha 2M-thrombin, alpha 2M-plasmin, and alpha 2M-trypsin complexes, approximately 50%, 60%, and 75% of the subunits are cleaved, respectively. Titration of sulfhydryl groups revealed that all purified binary complexes contained 2 +/- 0.5 mol of thiol/mol of complex, suggesting that each complex retains two intact thiol ester bonds. When the purified complexes were incubated with excess trypsin or with methylamine, an additional 1-2 mol of sulfhydryl/mol of complex could be titrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.  相似文献   

7.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to α2-macroglobulin (α2M). The proteinase binding reaction of PZP is investigated using chymotrypsin as a model enzyme. The time-course of the interaction is studied by measuring the change in intrinsic protein fluorescence of PZP-chymotrypsin reaction mixtures as a function of time after rapid mixing in a stopped-flow apparatus. Titrations show the changes of fluorescence at equilibrium to correspond with the formation of a chymotrypsin-PZP(tetramer) species. The kinetic results show the formation of the species to take place in an overall second-order process dependent on the concentrations of chymotrypsin and of PZP(dimers), k = 5 · 105M−1 ·s−1. Reactions of PZP-thiol groups do not give rise to fluorescence changes. The fluorescence changes most likely reflect the formation of an intermediate with intact thiol esters. Further analysis of the kinetic results suggests that the chymotrypsin-PZP(tetramer) intermediate is formed in two reaction steps: (1) initially native PZP(dimers) are cleaved at bait regions by enzyme molecules, and that is the rate determining reaction of the fluorescence changes; (2) association with another PZP(dimer) or PZP(dimer)-chymotrypsin complex in a very fast reaction that leads to the formation of 1:1-chymotrypsin-PZP(tetramer) intermediate, probably with intact thiol esters. The interactions studied apparently are established early in the path of the reaction and the fluorescence changes probably reflect noncovalent enzyme-PZP contacts, which are not changed when covalent binding occurs. Further, fluorescence changes are seen only in reactions of PZP with enzymes, not with methylamine.  相似文献   

8.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). Its properties and its reactions with a number of enzymes, particularly chymotrypsin, and with methylamine have been investigated. It is concluded that native PZP molecules are dimers of disulfide-bridged 180-kDa subunits and that proteinase binding results in covalent 1:1 (tetrameric)PZP-enzyme complexes. Native PZP is unstable, and storage should be avoided, but when kept unfrozen at 0 degree C most PZP preparations stay native 1-3 months. The reaction of PZP with chymotrypsin involves (i) proteolysis of bait regions, (ii) cleavage of beta-cysteinyl-gamma-glutamyl thiol ester groups, (iii) some change of the conformation and quaternary structure of PZP, and (iv) the formation of covalent 1:1 chymotrypsin-PZP(tetramer) complexes in which chymotrypsin is active but shows less activity than free chymotrypsin. The emission spectra of intrinsic fluorescence show significant differences between the PZP-chymotrypsin complex and its native components, whereas no differences are observed between methylamine-reacted PZP and native PZP. Methylamine reacts with the beta-cysteinyl-gamma-glutamyl thiol ester groups of PZP in a second-order process with k = (13.6 +/- 0.5) M-1 s-1, pH 7.6, 25 degrees C. The reaction product is PZP(dimers); no PZP(tetramers) are formed. The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M. Certain chymotrypsin-like and trypsin-like enzymes are bound much less efficiently than is chymotrypsin itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The interaction between human fibroblast collagenase and five mammalian alpha-macroglobulins (human alpha 2-macroglobulin and pregnancy zone protein, rat alpha 1- and alpha 2-macroglobulin, and rat alpha 1-inhibitor 3) differing in primary and quaternary structure has been investigated. Complex formation with each of these alpha-macroglobulins follows the course identified for many other proteinases, i.e. specific limited proteolysis in their bait regions inducing a set of conformational changes resulting in activation of the internal beta-cysteinyl-gamma-glutamyl thiol esters and covalent complex formation. At collagenase: alpha-macroglobulin molar ratios of less than 1:1 3.2-3.6 mol of SH groups appear for 1 mol of collagenase bound to human and rat alpha 2-macroglobulin and to rat alpha 1-macroglobulin. For these alpha-macroglobulins it can be estimated that the overall rate constant of complex formation is greater than 1.10(6) M-1 s-1 while it is much lower for human pregnancy zone protein and rat alpha 1-inhibitor 3. More than 95% of the complexed collagenase is covalently bound, and sodium dodecyl sulfate gel electrophoresis shows the typical pattern of bands corresponding to reaction products of very high apparent molecular weight. The same pattern is also seen in the covalent (greater than 98%) complex very slowly formed from Clostridium histolyticum collagenase and human alpha 2-macroglobulin. The identification of the sites of specific limited proteolysis in the bait regions of the five alpha-macroglobulins shows that cleavage may take place in sequences that are not related to those identified earlier in the collagens. These results greatly expand the repertoire of sequences known to be cleaved by fibroblast collagenase and suggest that this proteinase has a primary substrate specificity resembling that of the microbial proteinase thermolysin, as it preferentially cleaves at the NH2-terminal side of large hydrophobic residues. In addition, the results highlight the unique structure of the flexible alpha-macroglobulin bait region in that it can accommodate a conformation required by the highly restrictive fibroblasts collagenase. It is suggested that alpha-macroglobulins may play an important role in locally controlling the activity of collagenases and perhaps other proteinases of the extracellular matrix.  相似文献   

10.
In order to covalently bind the hydrolyzed thiol ester groups of the human alpha 2-macroglobulin (alpha 2M) transformed by methylamine, the phospholipase A2 (PLA2), a small enzyme (M(r) = 13,000) from Naja nigricollis snake venom was activated by succinimidyl 4-(maleimidomethyl)cyclohexane-1-carboxylate (SMCC). Average images determined from electron micrographs of the methylamine-transformed alpha 2M, with and without activated PLA2, were determined by image processing and compared. A localization of the PLA2 was achieved by subtracting the average image of alpha 2M transformed by methylamine from that containing PLA2. The results are consistent with previous work showing the central localization of chymotrypsin trapped in alpha 2M. They also suggest that the four thiol esters are located near the center of the alpha 2M molecule.  相似文献   

11.
Human alpha 2-macroglobulin (alpha 2M) was eluted as a single nondispersed peak from a TSK-G4000SW size exclusion chromatography column equilibrated in 20 mM-sodium phosphate/100 mM-NaCl, pH 7.2 (PBS). The void volume and total accessible volume of the column were 6.08 ml and 14.42 ml. The elution volume (Ve) of native alpha 2M was 9.20 +/- 0.04 ml. The Ve was altered minimally by changing the ionic strength or adding ethanol to the equilibration buffer. Ternary alpha 2M-trypsin, containing 2 mol of proteinase/mol of inhibitor, and alpha 2M-methylamine failed to be eluted in well-defined peaks when the column was equilibrated in PBS. The majority of either preparation was recovered slowly at Ve values greater than 14.5 ml, reflecting significant nonideal interactions with the support structure. Addition of 10% ethanol or increased ionic strength in the equilibration buffer independently caused either form of reacted alpha 2M to be eluted in a distinct peak at decreased Ve, suggesting that the nonideal interactions included hydrophobic and electrostatic adsorption. When the equilibration buffer was 80 mM-sodium phosphate/320 mM-NaCl, pH 7.2, partial resolution of ternary alpha 2M-trypsin and alpha 2M-methylamine was obtained with a single column run. The Ve values of ternary alpha 2M-trypsin and alpha 2M-methylamine in this buffer were 13.15 +/- 0.08 ml and 11.94 +/- 0.14 ml, respectively. The Ve of native alpha 2M was 8.84 +/- 0.03 ml. The resolving capacity of TSK-G4000SW was exploited to purify native alpha 2M rapidly and efficiently from solutions that contained significant amounts of either ternary alpha 2M-trypsin or binary alpha 2M-trypsin (1 mol of proteinase/mol of inhibitor). This purification was complete within the limits of sensitivity of denaturing and nondenaturing polyacrylamide-gel electrophoresis. alpha 2M-plasmin was well resolved from native alpha 2M. The Ve of alpha 2M-plasmin was 12.88 +/- 0.32 ml in 80 mM-sodium phosphate/320 mM-NaCl, pH 7.2. A number of procedures were used to prepare solutions with up to 90% binary alpha 2M-trypsin. The Ve of binary alpha 2M-trypsin in these various solutions was intermediate between the values of native alpha 2M and ternary alpha 2M-trypsin. The conformations of binary and ternary complex, as reflected by mobility in nondenaturing electrophoresis, were identical, confirming previous results. Finally, in the binary alpha 2M-trypsin complex, the single trypsin cleaved more than two, and as many as all four alpha 2M subunits.  相似文献   

12.
NMR and ESR spectroscopies have been used to examine the plasma protease inhibitor pregnancy zone protein (PZP) and its complex with chymotrypsin. The 1H NMR spectrum of PZP shows relatively few sharp resonances, which, by analogy with human alpha 2-macroglobulin, probably arise from the proteolytically sensitive bait region. Upon reaction with chymotrypsin to form a 1:1 protease.PZP tetramer complex, there is a large increase in the intensity of sharp resonances due to an increase in mobility of these residues. 35Cl NMR has been used to follow binding of zinc and manganese to apo-PZP. Zinc binding causes a linear broadening of the bulk Cl-, consistent with access of Cl- to PZP-bound zinc. Since zinc in the two highest affinity sites in human alpha 2-macroglobulin causes no broadening of Cl-, it is concluded that these zinc sites are absent from PZP. The mobility of chymotrypsin in the PZP.chymotrypsin complex was examined by covalently attaching a nitroxide spin label at the serine residue in the active site of the enzyme and examining the appearance of the ESR spectrum. The chymotrypsin is rigidly held by the PZP to which it is covalently bound. In an analogous experiment performed previously on alpha 2-macroglobulin, chymotrypsin, bound in the presence of methylamine and therefore largely noncovalently bound, was found to be free to rotate inside the cage formed by the protease inhibitor.  相似文献   

13.
Different conformational states of human alpha 2-macroglobulin (alpha 2M) and pregnancy zone protein (PZP) were investigated following modifications of the functional sites, i.e. the 'bait' regions and the thiol esters, by use of chymotrypsin, methylamine and dinitrophenylthiocyanate. Gel electrophoresis, mAb (7H11D6 and alpha 1:1) and in vivo plasma clearance were used to describe different molecular states in the proteinase inhibitors. In alpha 2M, in which the thiol ester is broken by binding of methylamine and the 'trap' is closed, cyanylation of the liberated thiol group from the thiol ester modulates reopening of the 'trap' and the 'bait' regions become available for cleavage again. The trapping of proteinases in the cyanylated derivative indicates that the trap functions as in native alpha 2M. In contrast, cyanylation has no effect on proteinase-treated alpha 2M. As demonstrated by binding to mAb, the methylamine and dinitrophenylthiocyanate-treated alpha 2M exposes the receptor-recognition site, but the derivative is not cleared from the circulation in mice. The trap is not functional in PZP. In native PZP and PZP treated with methylamine, the conformational states seem similar. The receptor-recognition sites are not exposed and removal from the circulation in vivo is not seen for these as for the PZP-chymotrypsin complex. Tetramers are only formed when proteinases can be covalently bound to the PZP. Conformational changes are not detected in PZP derivatives in which the thiol ester is treated with methylamine and dinitrophenylthiocyanate. The results suggest that the conformational changes in alpha 2M are generated by mechanisms different to these in PZP. The key structure gearing the conformational changes in alpha 2M is the thiol ester, by which the events 'trapping' and exposure of the receptor-recognition site can be separated. In PZP, the crucial step for the conformational changes is the cleavage of the 'bait' region, since cleavage of the thiol ester does not lead to any detectable conformational changes by the methods used.  相似文献   

14.
The two key structural features of alpha 2-macroglobulin (alpha 2M) involved in inhibitory caging of proteases are the thiol ester and the bait region. This paper examines the environment of the hydrolyzed thiol ester in methylamine-treated human alpha 2M and the separation between the bait region and the thiol ester and between the four thiol esters in the tetramer to try to further our understanding of how bait region proteolysis triggers thiol ester cleavage. The sulfhydryl groups of Cys-949, formed upon cleavage of the thiol ester by methylamine, were specifically labeled with the nitroxide spin-labels 3-(2-iodoacetamido)-PROXYL (iodo-I) (PROXYL = 2,2,5,5-tetramethylpyrrolidine-1-oxyl), 3-[2-(2-iodoacetamido)acetamido]-PROXYL (iodo-II), and 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (iodo-III). ESR spectra of these alpha 2M derivatives showed that label I is firmly held and label II has limited freedom of rotation consistent with location of the cysteine residue in a narrow cavity. Label III has much greater motional freedom. From the absence of dipole-dipole splittings in the ESR spectra, it is concluded that the four nitroxide groups in the tetramer are more than 20 A apart for both label I and label II. Label I broadens 1H NMR signals from one phenylalanyl, one tyrosyl, and four histidyl residues in the bait region. Separations of 11-17 A are estimated between the nitroxide of label I and these residues. Label II is further away and only broadens resonances from one of the histidines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A three-dimensional reconstruction of a protein-engineered mutant alpha(2)-macroglobulin (alpha(2)M) in which a serine residue was substituted for the cysteine 949 (C949S), making it unable to form internal thiol ester moieties, was compared with native and methylamine-transformed alpha(2)Ms. The native alpha(2)M structure consists of two oppositely oriented Z-shaped strands. Thiol ester cleavage following an encounter with a proteinase or a nucleophilic attack by methylamine causes a structural transformation in which the strands assume an opposite handedness and a significant portion of the protein density migrates from the distal ends of the molecule toward the center. The C949S mutant showed a protein density distribution very similar to that of transformed alpha(2)M, with a compact central region of protein density connected to two receptor-binding arms on each end of the molecule. Since no particle shapes characteristic of native or half-transformed alpha(2)Ms were seen in electron micrographs and the C949S mutant and alpha(2)M-methylamine structures are highly similar, we conclude that the intact thiol esters maintain native alpha(2)M in a quasi-stable state. In their absence, alpha(2)M folds into the more stable transformed structure, which displays the functionally important receptor-binding domains and contains the proteinase-entrapping internal cavity.  相似文献   

16.
By use of the intermediate form (I-form) [Gettins, Crews, & Cunningham (1989) Biochemistry 28, 5613-5618], alpha 2-macroglobulin can be specifically labeled with fluorescent probes in a manner that allows the determination of the topology of the four thiol ester derived Cys949 residues within this large tetrameric protease inhibitor. Freshly prepared I-form alpha 2-macroglobulin was reacted with 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonate (1,5-I-AEDANS) to produce alpha 2-macroglobulin specifically and stoichiometrically labeled with 1,5-AEDANS (donor) at the two Cys949 SH groups in the first protease interaction site. Upon subsequent reaction of this labeled species with chymotrypsin, the remaining two bait regions and thiol ester linkages were opened, generating two free SH groups on the two Cys949 residues in the second protease interaction site. These SH groups were specifically and stiochiometrically labeled with 5-(iodoacetamido)fluorescein (acceptor). Fluorescence energy transfer from donor to acceptor results in 82% loss of AEDANS fluorescence intensity. By use of an R0(2/3) value of 43.5 A, calculated from the spectral parameters of this system, an R(2/3) separation between donor and acceptor of 33.9 A was calculated. From fluorescence anisotropy measurements of both donor and acceptor attached to alpha 2-macroglobulin, upper and lower limits on the separation of 43.4 and 26.1 A, respectively, were calculated. These separations, small in the context of the alpha 2-macroglobulin tetramer, which has approximate dimensions of 190 x 90 x 90 A, severely restrict the possible locations of the four Cys949 residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Complexes (2:1) of chymotrypsin with human alpha 2-macroglobulin have been prepared in the presence of 200 mM methylamine such that 90% of the chymotrypsin remains noncovalently bound to the alpha 2-macroglobulin. Reaction of this complex with the active-site-directed spin-labeling reagent 4-[(ethoxyfluorophosphinyl)oxy]-2,2,6,6-tetramethylpiperidinyl+ ++-1-oxy results in nitroxide labeling of the active-site serine residue of the complexed chymotrypsin. Electron spin resonance (ESR) spectra of this complex were recorded at 275 K in buffer and at 263 K in 50% glycerol. At 263 K in 50% glycerol the spectrum is that expected for a rigid glass, whereas at room temperature the ESR spectrum shows that the chymotrypsin is only slightly immobilized compared with free spin-labeled chymotrypsin. These findings are discussed in relation to possible models of inhibition of protease activity by alpha 2-macroglobulin. It is concluded that the trap mechanism of Barrett and Starkey [Barrett, A. J., & Starkey, P. M. (1973) Biochem. J. 133, 709-724] is the only model currently considered that can account for the present findings.  相似文献   

18.
Covalent binding of proteinases by human alpha 2-macroglobulin (alpha 2M) results primarily from the formation of stable epsilon-Lys-gamma-Glu isopeptide bonds. Cross-linking engages 12, 13, and 10 of the 14, 14, and 11 Lys residues in chymotrypsin, trypsin, and subtilisin, respectively, and reaction with the alpha-amino group of the C-chain of chymotrypsin and the B-chain of beta-trypsin is also seen. In contrast, cross-linking engages only 6 of the 11 Lys residues in thermolysin. In each of these proteinases, a few residues react to the greatest extent: Lys36, Lys79, Lys87, and Lys93 in chymotrypsin; Lys87, Lys109, Lys222, and Lys239 in trypsin; Lys12, Lys43, and Lys141 in subtilisin; and Lys210 and Lys219 in thermolysin. In elastase, 1 of the 3 Lys residues (Lys87) is tentatively identified as being cross-linked. Formation of unstable bonds judged to be mainly p-tyrosyl-gamma-glutamyl esters can also be significant for some proteinases. In each of the proteinases, several of the strongly reacting Lys residues are located relatively close to each other, presumably reflecting steric constraints within the alpha 2M-proteinase complexes as they form. Proteinases are covalently bound to alpha 2M to one or two of its COOH-terminal bait region-cleaved half-subunits. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern of the high molecular weight cross-linked species indicates that binding of a proteinase through two cross-links occurs not only within the 360-kDa disulfide-bridged alpha 2M dimer but also between the two dimers in the alpha 2M tetramer.  相似文献   

19.
B J Chen  A I Yuan  D Wang  R D Feinman 《Biochemistry》1990,29(13):3361-3365
The kinetics of reaction of alpha 2-macroglobulin (alpha 2M) with thrombin and with trypsin were studied in the presence and absence of methylamine. The rate of enzyme-induced thiol release was found to be the same whether or not amine was present. The result suggests that covalent bond formation and enzyme-catalyzed amine incorporation proceed via a common (enzyme-dependent) rate-determining step. The reaction of lysyl-modified enzymes (which show poor covalent binding with alpha 2M) was similarly unaffected by amine, indicating that enzyme-catalyzed steps were also rate determining for hydrolysis of the thiol ester. The products of the reactions were analyzed by native and denaturing gel electrophoresis. Methylamine did not affect the total binding of enzyme to alpha 2M but did cause a substantial decrease in covalent binding. Surprisingly, not all covalent complexes were affected by the presence of amine: complexes in which enzyme was covalently bound to one half-molecule increased compared to the reaction with no amine; complexes in which two half-molecules are cross-linked by two bonds to a single enzyme were substantially reduced, however. The results are consistent with a mechanism of reaction in which an enzyme-dependent step is rate determining. This step is accompanied by activation of two thiol esters. One of these reacts immediately with the bound enzyme (or may be hydrolyzed if the enzyme amine groups are blocked). The other activated center is capable of reaction with external nucleophiles such as methylamine.  相似文献   

20.
Human alpha 2-macroglobulin and pregnancy zone protein are related with regard to primary structure, physicochemical properties, and quarternary structure. Both proteins undergo conformational changes when they form complexes with proteinases or react with primary amines. The surface properties of the native, chymotrypsin-treated and methylamine-treated forms of alpha 2-macroglobulin and pregnancy zone protein were studied by partitioning in aqueous two-phase systems composed of 7.5% dextran T70 and 5% poly(ethylene glycol) 8000. All proteins and their derivatives had a high potential for hydrophobic interaction as analyzed in terms of affinity for poly(ethylene glycol) esters of fatty acids included in the phase systems. Treatment of alpha 2-macroglobulin with methylamine or chymotrypsin increased the surface hydrophobicity significantly compared to that of the native protein. No difference in hydrophobic interaction was found for native and methylamine-treated pregnancy zone protein, but the chymotrypsin-treated protein showed a marked increase in binding to the hydrophobic ligand. The changes in surface hydrophobicity parallel changes in receptor binding properties of the derivatized forms of alpha 2-macroglobulin and could be a signal for binding to cell-surface receptors, followed by internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号