首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《植物生态学报》2015,39(11):1033
Aims Forest trees alter litter inputs, turnover and rhizospheric activities, modify soil physical, chemical and biological properties, and consequently affect soil organic carbon (SOC) storage and carbon sink strength. That how to select appropriate tree species in afforestation, reforestation and management practices is critical to enhancing forest carbon sequestration. The objective of this study was to determine the effects of tree species on SOC density and vertical distributions.Methods A common garden experiment with the same climate, soil, and management history was established in Maoershan Forest Ecosystem Station, Northeast China, in 2004. The experimental design was a completely randomized arrangement with twenty 25 m × 25 m plots, consisting of monocultures of five tree species, including white birch (Betula platyphylla), Manchurian walnut (Juglans mandshurica), Manchurian ash (Fraxinus mandshurica), Dahurian larch (Larix gmelinii), and Mongolian pine (Pinus sylvestris var. mongolica), each with four replicated plots. A decade after the establishment (2013-2014), we measured carbon density and related factors (i.e., bulk density, total nitrogen concentration, microbial biomass carbon, microbial biomass nitrogen, pH value) in soils of the 0-40 cm depth for these monocultures. Important findings Results showed that tree species significantly influenced the SOC density in the 0-40 cm depth (p < 0.05). SOC density in the 0-10 cm depth varied from 2.79 to 3.08 kg·m-2, in the order of walnut > ash> birch > larch > pine, in the 10-20 cm depth from 1.56 to 2.19 kg·m-2, in the order of pine > walnut > ash > birch > larch, in the 20-30 cm depth from 1.17 to 2.10 kg·m-2, and in the 20-40 cm depth from 0.84 to 1.43 kg·m-2. The greatest SOC density occurred in the birch stands in the 20-40 cm depth. The vertical distributions of SOC density varied with tree species. The percentage of SOC in the 0-10 cm depth over the total SOC in the soil profile was significantly higher in the walnut and larch stands than in others, while the percentage of SOC in the 20-40 cm depth over the total SOC was highest in the birch stands. SOC concentration and soil bulk density differed significantly among the stands of different tree species, and were negatively correlated. SOC density was positively correlated with soil microbial biomass and soil pH in the walnut, ash, and larch stands, and with total nitrogen density in all the stands. We conclude that tree species modifies soil properties and microbial activity, thereby influencing SOC density, and that different patterns of vertical distributions of SOC density among monocultures of different tree species may be attributed to varying SOC controls at each soil depth.  相似文献   

2.
《植物生态学报》2014,38(6):626
为了探明积水和冬季火烧对弃耕红壤稻田地表植被和土壤有机碳的影响, 该实验设置了对照(无人为干扰)、积水、冬季火烧和积水-冬季火烧4个不同处理, 采用样方法对样地植物的高度、密度、盖度及物种组成进行了调查。地上部分生物量采用收获法进行测定, 根系采用土柱法获取, 弃耕前后土壤有机碳含量的测定采用K2Cr2O7外加热法。结果表明: 1)积水和冬季火烧对红壤稻田弃耕早期物种组成、丰富度、均匀度及多样性具有重要的影响。双穗雀稗(Paspalum paspaloides)和水竹叶(Murdannia triquetra)是积水条件下的优势种, 而柔枝莠竹(Microstegium vimineum)是冬季火烧条件下的优势种, 大狼杷草(Bidens frondosa)是积水和冬季火烧条件下的共优种。2)分布在0-5 cm表层土壤中的根系占0-20 cm深度土壤中根系的66.50%-80.34%。样地在积水条件下, 2011-2013年0-20 cm深度的土壤根系生物量分别高出对照样地的49.84%、73.34%和28.94%。3)冬季火烧可以提高样地的物种多样性和增加地上部分生物量, 2011-2013年冬季火烧样地分别高出对照样地的25.74%、64.30%和50.24%。4)与稻田弃耕前土壤有机碳含量逐渐上升趋势相反, 稻田弃耕6年后, 对照、积水、冬季火烧和积水-冬季火烧样地中土壤有机碳含量分别降低11.16%、18.99%、9.17%和19.12%, 并且在积水条件下土壤有机碳含量降低更明显(p < 0.05)。研究结果表明, 红壤稻田弃耕后地表植被物种组成、地上和地下生物量、土壤有机碳含量与积水和冬季火烧关系密切(p < 0.05)。  相似文献   

3.
《植物生态学报》2021,44(12):1285
为了探讨人工林内优势乔木和林下灌草根际土壤氮矿化特征, 明确乔灌草根际土壤氮转化差异, 该研究以江西泰和千烟洲站区典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林为对象, 在植被生长季初期(4月)和旺盛期(7月)分析3种人工林内乔木、优势灌木(檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata))和草本(狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨(Dryopteris atrata))根际土壤的净氮矿化速率、土壤化学性质及土壤微生物特征。结果发现: 1)物种、林型和取样季节显著影响了根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)。马尾松和湿地松林内林下灌草根际土壤净氮矿化的季节敏感性高于乔木: 4月乔木根际土壤NminNamm显著高于大多数林下灌草, 而7月林下灌草根际土壤NminNamm显著提高, 与乔木不再具有显著差异, 与主成分综合得分方差分析的结果一致。一般情况下, 杉木林NminNnit显著高于马尾松林和湿地松林。7月净氮矿化显著高于4月。2)土壤铵态氮、硝态氮、全氮及土壤微生物量氮含量是影响根际土壤净氮矿化的主要因素。土壤化学性质对人工林根际土壤净氮矿化变异的贡献率为29.2%, 显著高于土壤微生物的解释率。充分考虑不同季节林下植被根际土壤的净氮矿化及其关键影响因素可为准确评估人工林生态系统养分循环状况提供重要支撑。  相似文献   

4.
《植物生态学报》2018,42(11):1120
外来植物入侵对土壤氮循环和氮有效性的影响是入侵成功或进一步加剧的重要原因。通过对比相同研究地点入侵区域和无入侵区域的土壤原位氮状态差异, 探讨了外来植物入侵对土壤氮有效性的影响程度和生理生态学机制。基于107篇相关研究文献数据的整合, 发现植物入侵区域相对于无入侵区域土壤总氮、铵态氮、硝态氮、无机氮、微生物生物量氮含量显著增加, 增幅分别为(50 ± 14)%、(60 ± 24)%、(470 ± 115)%、(69 ± 25)%、(54 ± 20)%。土壤硝态氮含量增幅较大反映硝化作用增强, 这可能增加入侵植物硝态氮利用以及喜硝植物的共存。温带地区植物入侵后土壤的硝态氮含量增幅显著高于亚热带地区。固氮植物入侵后土壤的总氮和无机氮含量增幅均显著高于非固氮植物入侵。木本和常绿植物入侵后土壤的总氮含量增幅分别高于草本和落叶植物入侵; 而土壤铵态氮含量的增幅没有显著差异且与固氮入侵植物占比无明显关系; 然而硝态氮含量的增幅普遍较高且与固氮入侵植物占比显著正相关。外来入侵植物固氮功能以及凋落物质量和数量是影响土壤氮矿化和硝化过程的关键因素。该研究为理解外来植物入侵成功和加剧的机制以及入侵植物功能性状与土壤氮动态之间的关系提供了新的见解。  相似文献   

5.
《植物生态学报》2016,40(8):760
Aims Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) are important characteristics of the ecological processes and functions. Studies on population ecological stoichiometry can refine the content of flora chemometrics, determine the limited nutrient, and provide data for process-based modeling over large scale. Phyllostachys edulis is an important forest type, whose area accounts for 74% of total bamboo forest area in Southern China. However, little is known about the ecological stoichiometric in P. edulis. This study aimed to reveal C:N, C:P and N:P stoichiometry characteristics of the “plant-soil-litter” continuum and to provide a better understanding nutrient cycling and stability mechanisms in P. edulis forest in China. Methods The data were collected from the published literature containing C、N、P content in leaf or surface soil (0-20 cm) or littefall in P. edulis forests. Important findings 1) The leaf C, N, P content were estimated at 478.30 mg·g-1, 22.20 mg·g-1, 1.90 mg·g-1 in P. edulis, and the corresponding C: N, C: P and N: P were 26.80, 299.60 and 14.40, respectively. Soil C, N, and P content in 0-20 cm were 21.53 mg·g-1, 1.66 mg·g-1, 0.41 mg·g-1, with ratios of 14.20 for C:N, 66.74 for C:P and 4.28 for N:P. The C, N and P contents were 438.49 mg·g-1, 13.39 mg·g-1, 0.86 mg·g-1 for litterfall, with the litter C:N, C:P and N:P being 25.53, 665.67, 22.55, respectively. 2) In the plant-soil-litter system in P. edulis forest, leaf had higher C:N, litter had higher C:P and N:P, while soil were the lowest. The N, P resorption rate was 39.68% and 54.74%, indicating that P. edulis forest growth and development was constrained by P or by both of N and P in China. 3) N content and N:P in leaf showed a tendency to increase with latitude, while the C:N of leaf declined with latitude. N:P of leaf increased with longitude, but the P content and the C:N of leaf showed a opposite trend. C: N of soil increased with longitude, whereas the N content of soil declined longitude. The N content of litter declined with longitude. 4) The leaf N content was negatively correlated with mean annual temperature and mean annual precipitation, but being more sensitive to temperature than precipitation. The positive correlations between N content and latitude support “Temperature-Plant Physiological” hypothesis, reflecting an adaptive strategy to environmental conditions.  相似文献   

6.
《植物生态学报》2017,41(11):1168
Aims Soil aggregate is an important component of soil structure, playing an important role in the physical and biological protection mechanism of soil organic carbon (SOC) through isolating SOC from microorganisms. As far as we know, there are few studies, however, on exploring the spatial distribution of soil aggregate at the regional scale. Our objective was to investigate the mass allocation and stability of soil aggregate in different types of Nei Mongol grasslands. Methods We have established 78 sites with a size of 10 m × 10 m across the transect of Nei Mongol grasslands and collected soil samples from different soil depth up to 1 m. We used wet sieving method to separate different sizes of aggregate partition and used mean mass diameter (MMD) and geometric mean diameter (GMD) in order to evaluate the stability of soil aggregate. The two-way ANOVA was used to test the difference of mass percentage and stability of soil aggregate in different grassland types and soil depths. In addition, a linear regression analysis was used to analyze the correlations of mass percentage and stability of soil aggregate with both mean annual precipitation (MAP) and mean annual temperature (MAT). Important findings The results showed that the mass percentages of soil aggregate were highest in meadow steppe, while almost equal in typical steppe and desert steppe. However, no significant patterns were found along the soil depth. The mass percentage of soil aggregate fractions were positively correlated with MAP in all soil layers, but negatively correlated with MAT except the layer of 70-100 cm. For the stability of soil aggregate, at 0-10 and 10-20 cm, MMD and GMD of meadow steppe were significantly greater than those of typical and desert steppes, whereas no significant differences among three grassland types were found for other soil layers. Besides, MMD and GMD in meadow steppe and typical steppe gradually decreased along the soil depth.  相似文献   

7.
《植物生态学报》2016,40(11):1111
Aims Winter soil respiration plays a crucial role in terrestrial carbon cycle, which could lose carbon gained in the growing season. With global warming, the average near-surface air temperatures will rise by 0.3 to 4.8 °C. Winter is expected to be warmer obviously than other seasons. Thus, the elevated temperature can significantly affect soil respiration. The coastal wetland has shallow underground water level and is affected by the fresh water and salt water. Elevated temperature can cause the increase of soil salinity, and as a result high salinity can limit soil respiration. Our objectives were to determine the diurnal and seasonal dynamics of soil respiration in a coastal wetland during the non-growing season, and to explore the responses of soil respiration to environmental factors, especially soil temperature and salinity.
Methods A manipulative warming experiment was conducted in a costal wetland in the Yellow River Delta using the infrared heaters. A complete random block design with two treatments, including control and warming, and each treatment was replicated each treatment four times. Soil respiration was measured twice a month during the non-growing season by a LI-8100 soil CO2 efflux system. The measurements were taken every 2 h for 24 h at clear days. During each soil respiration measurement, soil environmental parameters were determined simultaneously, including soil temperature, moisture and salinity.
Important findings The diurnal variation of soil respiration in the warming plots was closely coupled with that in the control plots, and both exhibited single-peak curves. The daily soil respiration in the warming was higher than that in the control from November 2014 to January 2015. Contrarily, from March to April 2015. During the non-growing seasons, there were no significant differences in the daily mean soil respiration between the two treatments. However, soil temperature and soil salt content in the warming plots were significantly higher than those in the control plots. The non-growing season was divided into the no salt restriction period (November 2014 to middle February 2015) and salt restriction period (middle February 2015 to April 2015). During non-growing season, soil respiration in the warming had no significant difference compared with that in control. During the no salt restriction period, soil respiration in the warming was 22.9% (p < 0.01) greater than the control when soil temperature at 10 cm depth in warming was elevated by 4.0 °C compared with that in control. However, experimental warming decreased temperature sensitivity of soil respiration (Q10). During salt restriction period, soil warming decreased soil respiration by 20.7% compared with the control although with higher temperature (3.3 °C), which may be attributed to the increased soil salt content (Soil electric conductivity increased from 4.4 ds·m-1 to 5.3 ds·m-1). The high water content can limit soil respiration in some extent. In addition, the Q10 value in the warming had no significant difference compared with that in control during this period. Therefore, soil warming can not only increase soil respiration by elevating soil temperature, but also decrease soil respiration by increasing soil salt content due to evaporation, which consequently regulating the soil carbon balance of coastal wetlands.  相似文献   

8.
为科学认识科尔沁沙地优势固沙灌木的生态适应性和固沙植被演变规律, 该研究对科尔沁沙地流动沙丘、半固定沙丘、固定沙丘和丘间低地的优势固沙灌木小叶锦鸡儿(Caragana microphylla)和盐蒿(Artemisia halodendron)进行野外调查, 研究了这两种固沙灌木的叶片氮(N)、磷(P)化学计量特征、灌丛土壤养分状况以及内稳性特征。结果表明: 1)与盐蒿相比, 灌木小叶锦鸡儿具有较高的叶片N含量及N:P, 而P含量仅为盐蒿的1/2; 2)两种优势固沙灌木灌丛下土壤的全N、全P含量及速效N、速效P含量高于该地区土壤的平均水平, 小叶锦鸡儿灌丛下土壤养分含量显著高于盐蒿灌丛下土壤; 3)盐蒿叶片N、P化学计量内稳性指数(H)表现为HP > HN:P > HN, 说明盐蒿更易受土壤N的限制; 小叶锦鸡儿叶片N、P化学计量内稳性指数表现为HN:P > HN > HP, 意味着小叶锦鸡儿更易受土壤P的限制。在N含量较低的沙化草地, HN较高的固沙灌木小叶锦鸡儿比盐蒿更具生长优势, 对于该地区生态恢复及保护具有不可替代的作用。然而, 小叶锦鸡儿额外吸收的N, 使其生长过程可能易受P的限制, 因此在沙地恢复过程中应注意土壤P的供应。  相似文献   

9.
干旱是影响南方喀斯特地区植物生长的重要限制因子, 气候变化会影响该地区的降水量和分布格局。研究该地区土壤和植物化学计量特征及其水分响应格局, 具有重要意义。自2017年4月开始, 在云南建水喀斯特植物群落进行加水试验, 2018年4月(旱季)和8月(雨季)分别采集土壤和优势灌木鞍叶羊蹄甲(Bauhinia brachycarpa)和假虎刺(Carissa spinarum)叶片样品, 测定碳、氢、氮、磷、硫、钾、钙、镁、铝、钠、铁、锰、锌、铜14种元素含量。结果表明, 水分添加影响了表层土壤中碳、氮、钠的含量, 相比于旱季, 雨季土壤中钠和硫含量明显减少, 其余土壤元素在水分添加和季节变化下并未表现出明显差异。土壤水分含量的增加使得鞍叶羊蹄甲和假虎刺叶片中钾含量下降, 钙含量上升。在水分条件变化下, 两种植物叶元素含量的稳定性与植物中元素的含量有关, 含量越接近极大值(基本元素碳、氢、氮等)或极小值(微量元素铜、锌等)的元素其变异系数越小(越稳定), 两种植物中含量接近于1 mg·g-1的元素磷、硫、镁的变异系数最高。在土壤水分条件变化下, 假虎刺中碳、氮、磷等大量元素含量的稳定性显著高于鞍叶羊蹄甲。降水变化和水分添加导致的土壤水分变化, 对滇南喀斯特地区土壤和植物中不同元素含量的影响不同, 这些结果将为该地区的土壤、植被修复和管理提供科学参考。  相似文献   

10.
《植物生态学报》2021,44(12):1273
探究不同植物来源可溶性有机质(DOM)进入土壤后对酶活性的影响, 可以为降水淋溶下亚热带地区不同森林生态系统土壤碳循环提供科学依据。该研究提取杉木(Cunninghamia lanceolata)、木荷(Schima superba)和楠木(Phoebe zherman) 3种植物鲜叶中的DOM分别输入杉木人工林土壤中, 以等量的去离子水添加为对照, 进行25天的室内培养。培养结束后测定土壤理化性质、微生物生物量和酶活性等指标。结果表明: 与对照处理(CT)相比, 添加3种叶片DOM后, 土壤总有机碳(SOC)、总氮(TN)含量和碳氮比均无显著变化。杉木叶片DOM添加处理(CL)的TN含量显著低于木荷叶片DOM添加处理(SL)和楠木叶片DOM添加处理(PL), 碳氮比显著高于SL和PL。3种叶片DOM输入整体上提高了土壤溶解有机碳(DOC)和溶解有机氮(DON)的含量。叶片DOM输入后土壤微生物生物量碳(MBC)含量无显著变化, 然而CL和SL的土壤微生物生物量氮(MBN)含量分别比CT降低了50.9%和51.1%, PL的MBN含量比CT提高了54.0%。与CT相比, 不同植物来源DOM输入后, β-葡萄糖苷酶(βG)、纤维素水解酶(CBH)和过氧化物酶(PEO) 3种酶活性均显著上升, 而多酚氧化酶(PPO)活性则显著下降; 此外, βG和CBH活性均表现出CL > SL > PL的特征。相关性分析的结果表明, 添加叶片DOM 3种处理的SOC、TN、MBN含量和βG、CBH活性都与所输入DOM的DOC含量和腐殖化指数(HIX)显著相关, 此外, 土壤MBN含量和PPO活性与输入叶片DOM的pH呈正相关关系。冗余分析(RDA)结果表明, 叶片DOM输入后引起土壤酶活性变化的关键因子是DON和DOC含量。总体来说, 不同植物来源DOM性质的差异会影响土壤碳循环水解酶的活性, 而叶片DOM输入后增加了土壤碳和氮的有效性, 引起4种碳循环酶的不同响应。  相似文献   

11.
《植物生态学报》2015,39(11):1101
AimsPeanut (Arachis hypogaea) is one of the calcium (Ca)-like crops. In acidic soil, low soil exchangeable Ca2+ content, which usually is caused by eluviation, can affect peanut pod development, even causes pod unfilled. The objective of this study was to investigate the effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil.Methods ‘Huayu22’ was used as materials, and field experiments were conducted in Wendeng, Weihai (2013) and Sanzhuang, Rizhao (2014), respectively. Three treatments were carried out, i.e. No Ca-application (T0), 14 kg·667 m-2 fused CaO (T1) and 28 kg·667 m-2 fused CaO (T2). Top 3rd leaves of main stems were harvested to determine the activities of carbon and nitrogen metabolism enzyme every 15 days from anthesis to mature period. Additionally, the pod traits and yield were investigated at harvest time. Uniform dry pods were used to determine the quality of kernel.Important findings Application of calcium fertilizer significantly increased the pod yield of peanut in acid soil. Yield of T1 treatment increased by 26.92% and T2 increased by 21.65% on average at two sites. It might be related to higher pod numbers per plant, higher double kernel rate, and higher plumpness of kernel under T1 and T2 treatment than under T0 treatment. Simultaneously, application of calcium fertilizer also significantly increased the protein and fat content of peanut in acidic soil. The protein content increased 2.02% and the fat content increased 3.01% on average in T1 treatment, respectively. The protein content increased 1.56% and the fat content increased 2.58% in T2 treatment, respectively. Additionally, Calcium fertilizer not only improved the lysine and total amino acid content but also improved oleic/linoleic acid (O/L) ratio of peanut in acidic soil. These might be due to higher activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamate pyruvate transaminase (GPT) in the leaves of peanut in acidic soil under T1 and T2 treatments than under T0 treatment. What’s more, the activity of GS of peanut treated with T1 was higher than that treated with T2. Application of Calcium fertilizer also improved the activities of phosphoenolpyruvate carboxylase (PEPCase), sucrose synthase (SS) and sucrose phosphate synthase (SPS) of peanut at early growing period, but the activities at late growth stage were lower than T0 treatment. Our results demonstrate that the economic performance of 14 kg·667 m-2 fused CaO was the best one among these three treatments applied.  相似文献   

12.
《植物生态学报》2018,42(8):863
分株间光合产物的整合作用对克隆植物适应生存环境具有重要作用, 但有关光合产物传输方向对克隆植物根际土壤微生物过程的影响尚不清楚。该研究以根状茎克隆植物蓉城竹(Phyllostachys bissetii)为研究对象, 通过剪除分株地上部分控制光合产物传输方向(顶向传输和基向传输), 研究光合产物传输方向对蓉城竹分株根际土壤微生物过程的影响, 其中顶向传输组是将远端分株地上部分剪除(保留地面以上20 cm), 近端分株自然生长; 基向传输组则是将近端分株地上部分剪除(保留地面以上20 cm), 远端分株自然生长。两组实验中保持根状茎连接或切断处理。测定了地上部分被剪除分株根际土壤中碳和氮有效性、微生物生物量参数以及氮转化相关土壤胞外酶活性等指标。结果表明: 光合产物顶向传输中, 根状茎保持连接的远端分株根际土壤总有机碳(TOC)、溶解性有机碳(DOC)、溶解性有机氮(DON)、铵态氮(NH4 +-N)、硝态氮(NO3 --N)含量显著高于切断的远端分株, N-乙酰基-β-D-氨基葡萄糖苷酶(NAGase)、多酚氧化酶(POXase)和脲酶(Urease)活性显著升高, 光合产物的顶向传输对远端分株根际碳、氮有效性和根际微生物过程产生了显著性影响; 光合产物的基向传输中, 根状茎保持连接的近端分株根际与切断分株相比具有更高的微生物生物量氮(MBN)含量、Urease、POXase活性, 较低的NAGase活性和NH4 +-N、NO3 --N含量, 但碳的有效性无显著性差异。蓉城竹分株间光合产物的非对称性传输对根际微生物过程的影响可能是对动物取食或人为砍伐等干扰的有益权衡, 这有助于理解克隆植物对生存环境的种群适应机制。  相似文献   

13.
《植物生态学报》2016,40(12):1257
AimsThe carbon (C), nitrogen (N) and phosphorus (P) stoichiometry (C:N:P) of soil profoundly influences the growth, community structure, biomass C:N:P stoichiometry, and metabolism in microbes. However, the relationships between soil and microbes in the C:N:P stoichiometry and their temporal dynamics during ecosystem succession are poorly understood. The aim of this study was to determine the temporal patterns of soil and microbial C:N:P stoichiometry and their relationships during ecosystem succession.MethodsAn extensive literature search was conducted and data were compiled for 19 age sequences of successional ecosystems, including 13 forest ecosystems and 6 grassland ecosystems, from 18 studies published up to May 2016. Meta-analyses were performed to examine the sequential changes in 18 variables that were associated with soil and microbial C, N and P contents and the stoichiometry. Important findings (1) There was no consistent temporal pattern in soil C:N along the successional stages, whereas the soil C:P and N:P increased with succession; the slopes of the linear relationships between soil C:N:P stoichiometry and successional age were negatively correlated with the initial content of the soil organic C within given chronosequence. (2) There was no consistent temporal pattern in microbial C:N:P stoichiometry along the successional stages. (3) The fraction of microbial biomass C in soil organic C (qMBC), the fraction of microbial biomass N in soil total N, and the fraction of microbial biomass P in soil total P all increased significantly with succession, in consistency with the theory of succession that ecosystem biomass per unit resource increases with succession. (4) The qMBC decreased with increases in the values of soil C:N, C:P, or N:P, as well as the stoichiometric imbalances in C:N, C:P, and N:P between soil and microbes (i.e., ratios of soil C:N, C:P, and N:P to microbial biomass C:N, C:P, and N:P, respectively). The C:N, C:P, and N:P stoichiometric imbalances explained 37%-57% variations in the qMBC, about 7-17 times more than that explainable by the successional age, illustrating the importance of soil-microbial C:N:P stoichiometry in shaping the successional dynamics in qMBC. In summary, our study highlights the importance of the theories of ecosystem succession and stoichiometry in soil microbial studies, and suggests that appropriately applying macro-ecological theories in microbial studies may improve our understanding on microbial ecological processes.  相似文献   

14.
《植物生态学报》2016,40(4):395
Aims
This study was conducted to investigate carbon stocks in forest ecosystems of different stand ages in Anhui Province, and to identify the carbon sequestration potential of climax forests controlled by the natural environment conditions.
Methods
Data were collected based on field investigations and simulations were made with the BIOME4 carbon cycle model.
Important findings
Currently, the total forest carbon stocks in Anhui Province amounts to 714.5 Tg C: 402.1 Tg C in vegetation and 312.4 Tg C in soil. Generally, both the total and vegetation carbon density exhibit an increasing trend with the natural growth of forest stands. Soil carbon density increases from young to near mature forests, and then gradually decreases thereafter. Young and middle-aged forests account for 75% of the total forest area in Anhui Province, with potentially an additional 125.4 Tg C to be gained after the young and middle-aged forests reach near mature stage. Results of BIOME4 simulations show that potentially an additional 245.7 Tg C, including 153.7 Tg C in vegetation and 92 Tg C in soil, could be gained if the current forests are transformed into climax forest ecosystems in Anhui Province.  相似文献   

15.
《植物生态学报》2014,38(5):425
2008年和2009年(均为枯水年), 在半干旱区内蒙古太仆寺旗农田-草地生态系统国家野外站开展观测实验, 通过观测蒸散发(波文比系统)、土壤水分(烘干称重法)、降水量, 以及植被土壤特征调查, 基于水量平衡理论, 对比研究了3块天然草地、3块不同退耕时间草地共6个样地的水分收支, 旨在定量地评估退耕草地的水分收支, 为采取科学措施促进退耕草地尽快向天然草地过渡提供依据。结果表明: 1)随着退耕时间增加, 植被盖度逐渐增加, 但是群落中科、属、种的数量趋于减少, 且优势种从一年生的中旱生草本植物逐渐转变成多年生的旱生草本植物; 2)植被蒸腾是草原植被主要的耗水途径, 随着退耕时间增加, 退耕草地的蒸散发量呈增加趋势, 其最大值在4.5-5.8 mm·d-1之间; 3)退耕草地土壤含水量平均值为0.09 m3·m-3, 其水分剧烈变化主要发生在距地 表60 cm内, 且随退耕时间增加土壤含水量减少, 而天然草地土壤含水量平均值为0.06 m3·m-3, 其水分剧烈变化发生在距地 表20 cm内; 4)随退耕时间增加, 退耕草地与天然草地的土壤水分与蒸散发在数值上差距逐渐缩小; 5)退耕草地水分收支基本平衡, 但在极枯年份(降水量174 mm)的生长季, 降水不能满足蒸散发需求, 呈现水分亏损。退耕草地逐步向天然草地过渡, 但是退耕草地的土壤水分在逐渐减少, 呈现“生境干旱化现象”。今后应加强对草地的封育与监测, 促进植物群落向水分利用效率更高、更适应半干旱环境的方向演替。  相似文献   

16.
戈壁灌丛堆周边地表土壤颗粒的空间异质特征   总被引:5,自引:0,他引:5       下载免费PDF全文
研究戈壁地区单个灌丛及其下沙堆这一有机整体对周边土壤风蚀的抑制能力, 对加强相关地区的植被类型及其空间配置格局的防沙效应研究十分重要, 可为荒漠化监测的评价和制定科学的防治措施提供参考。该文利用数字图像处理技术, 获取吉兰泰盐湖北部戈壁上单个白刺(Nitraria tangutorum)灌丛沙堆和沙冬青(Ammopiptanthus mongolicus)灌丛沙堆周边地表不同土壤风蚀颗粒的百分含量; 并采用经典描述性统计及地统计学方法, 对各类土壤风蚀颗粒百分含量的水平空间异质性进行分析。结果表明: (1)灌丛基部和下风向是细物质积累区, 以灌丛堆为中心向外, <0.42 mm的细颗粒含量呈减少趋势; 而且细物质积累的最大值出现在白刺灌丛的迎风侧附近, 沙冬青样地则相反, 出现在灌丛的背风侧附近。在沙源物质有限的戈壁中, 白刺的防风固沙作用集中体现在灌丛附近, 其水平空间尺度范围不及沙冬青, 这亦是白刺样地粗粒化程度高于沙冬青样地的原因。(2)白刺和沙冬青灌丛附近地表中粒径>0.84 mm (不可蚀)、0.84-0.42 mm (半可蚀)及<0.42 mm (高度可蚀)颗粒的空间异质性尺度分别为17.80 m、66.63 m、8.41 m和9.82 m、15.33 m、14.91 m, 均超出了灌丛冠幅覆盖范围, 空间自相关部分比例C/(C0 + C)在63.40%-99.96%之间, 由此推断灌丛沙堆附近的风沙流特征是造成相应尺度内土壤颗粒空间异质性的主要因子。(3)高度可蚀颗粒的空间异质性尺度略大于灌丛平均间距(8.77 m包括灌丛半径), 从防止土壤风蚀来看, 这说明研究区内的建群种灌丛间存在一定程度的相互促进关系, 有利于该区植被的稳定与发展。  相似文献   

17.
《植物生态学报》1958,44(6):687
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

18.
对于养分贫瘠的盐渍化草地生态系统, 大气氮沉降如何影响土壤氮循环过程是一个目前尚未解决的问题。该研究在位于华北地区山西省右玉县境内的盐渍化草地建立了一个模拟氮沉降的试验平台, 设置8个氮添加水平, 分别为0、1、2、4、8、16、24、32 g·m-2·a-1 (N0、N1、N2、N4、N8、N16、N24、N32), 生长季5-9月, 每月月初以喷施的方式等量添加NH4NO3。从2017年5月到2019年10月, 运用顶盖PVC管法每月一次进行净氮矿化速率的测定同时计算了净氮矿化速率对不同水平氮添加的敏感性。主要结果表明: (1)高水平氮添加(N16、N24、N32)显著增加土壤无机氮库; (2)该盐渍化草地土壤氮矿化以硝化作用为主, 经过3年氮添加以后, 高氮添加(N24、N32)显著促进了土壤净硝化速率, 并且不同氮添加水平在不同的月份和年份中表现出差异性响应; (3)不同氮添加水平对土壤净氮矿化敏感性的影响在不同降水年份差异显著, 短期低水平氮添加提高了土壤净氮矿化的敏感性, 而高水平氮添加降低土壤净氮矿化敏感性; (4)盐渍化草地土壤净氮矿化速率与土壤温度和水分呈正相关关系, 与土壤pH呈负相关关系。因此, 在当前氮沉降增加的背景下, 北方盐渍化草地土壤氮矿化速率对低氮添加的敏感性较高, 结合氮沉降的特点, 未来模型预测应该同时考虑氮沉降对盐渍化草地的可能影响。  相似文献   

19.
《植物生态学报》2016,40(4):292
Aims
Estimating soil organic carbon (SOC) density and influence factors of tropical virgin forests in Hainan Island provide new insight in basic data for SOC pool estimation and its dynamics study.
Methods
The main distribution areas of tropical virgin forests in Jianfengling (JFL), Bawangling (BWL), Wu- zhishan (WZS), Diaoluoshan (DLS), Yinggeling (YGL) of Hainan Island were selected, and soil samples (0-100 cm) were sampled and analyzed. SOC density was estimated by soil vertical fitting method and soil stratification method to discover the distribution characteristics of soil organic carbon in tropical virgin forests of Hainan Island.
Important findings
Results showed that: (1) The average SOC density using soil vertical fitting method in JFL, BWL, WZS, DLS and YGL was 14.98, 18.46, 16.48, 18.81, 16.66 kg·m-2, respectively, which was significantly higher (p < 0.05) than the estimated average SOC density using soil stratification method in these areas (14.73, 16.24, 15.50, 16.91, 15.03 kg·m-2, respectively). It is better to use soil vertical fitting method for SOC density estimation when the soil was natural without disturbance. (2) The proportion of SOC content in the first 0-30 cm depth interval out of SOC in the whole 0-100 cm soil profiles in JFL, BWL, WZS, DLS and YGL was 50.50%, 48.56%, 43.49%, 47.37%, 42.88%, respectively. (3) SOC density was significantly negative correlated with Shannon-Wiener index, Simpson index, species richness, and soil bulk density; and was significantly positive correlated with altitude, soil porosity, and soil nitrogen. However, SOC density was not significantly correlated to slope, biomass, average diameter at breast height, or average height. (4) Our study area Hainan was located in low latitude area with high rainfall and high temperature, which accelerated the decomposition of organic matter and nutrient recycling, resulting in significantly lower SOC densities in this tropical virgin forests of Hainan Island than the average value in China.  相似文献   

20.
将无干扰的原生沼泽作为对照, 运用比较法研究了纳帕海高原湿地不同干扰强度下形成的湿地利用类型, 即沼泽(无干扰)、沼泽化草甸(轻度干扰)、草甸(中度干扰)和垦后湿地(重度干扰) 4个湿地利用类型的碳氮含量及其分布格局, 揭示干扰对纳帕海不同湿地利用类型碳氮及土壤真菌分布的影响。研究表明: (1) 4个湿地利用类型上下层土壤有机质(SOM)、全氮(TN)、碳氮比(C:N)和pH值均有显著的差异性(p < 0.01), 并且随着干扰强度的增大, SOM和TN含量逐渐减少。(2)土壤真菌经PDA培养基培养后计数, 在同一湿地类型上层的真菌数量大于下层, 随着干扰强度的增加, 真菌的数量逐渐增加。相关性分析表明: 真菌的数量与pH值、SOM和TN呈极显著负相关, 与C:N呈显著正相关。(3)系统发育研究表明: 纳帕海湿地分布有土壤真菌Ascomycota、Basidiomycota和Zygomycota, 其中Ascomycota是优势类群, 在高原湿地土壤碳氮分解等物质循环过程中Ascomycota处于主导地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号