首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutagenesis was used to probe the interface between the small GTPase Cdc42p and the CRIB domain motif of Ste20p. Members of a cluster of hydrophobic residues of Cdc42p were changed to alanine and/or arginine. The interaction of the wild-type and mutant proteins was measured using the two-hybrid assay; many, but not all, changes reduced interaction between Cdc42p and the target CRIB domain. Mutations in conserved residues in the CRIB domain were also tested for their importance in the association with Cdc42p. Two conserved CRIB domain histidines were changed to aspartic acid. These mutants reduced mating, as well as responsiveness to pheromone-induced gene expression and cell cycle arrest, but did not reduce in vitro the kinase activity of Ste20p. GFP-tagged mutant proteins were unable to localize to sites of polarized growth. In addition, these point mutants were synthetically lethal with disruption of CLA4 and blocked the Ste20p-Cdc42p two-hybrid interaction. Compensatory mutations in Cdc42p that reestablished the two-hybrid association with the mutant Ste20p CRIB domain baits were identified. These mutations improved the pheromone responsiveness of cells containing the CRIB mutations, but did not rescue the lethality associated with the CRIB mutant CLA4 deletion interaction. These results suggest that the Ste20p-Cdc42p interaction plays a direct role in Ste20p kinase function and that this interaction is required for efficient activity of the pheromone response pathway.  相似文献   

2.
The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Delta versus nbp2Delta strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.  相似文献   

3.
4.
Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins.  相似文献   

5.
In Saccharomyces cerevisiae, pheromone response requires Ste5 scaffold protein, which ensures efficient G-protein-dependent recruitment of mitogen-activated protein kinase (MAPK) cascade components Ste11 (MAPK kinase kinase), Ste7 (MAPK kinase), and Fus3 (MAPK) to the plasma membrane for activation by Ste20 protein kinase. Ste20, which phosphorylates Ste11 to initiate signaling, is activated by binding to Cdc42 GTPase (membrane anchored via its C-terminal geranylgeranylation). Less clear is how activated and membrane-localized Ste20 contacts Ste11 to trigger invasive growth signaling, which also requires Ste7 and the MAPK Kss1, but not Ste5. Ste50 protein associates constitutively via an N-terminal sterile-alpha motif domain with Ste11, and this interaction is required for optimal invasive growth and hyperosmotic stress (high-osmolarity glycerol [HOG]) signaling but has a lesser role in pheromone response. We show that a conserved C-terminal, so-called "Ras association" (RA) domain in Ste50 is also essential for invasive growth and HOG signaling in vivo. In vitro the Ste50 RA domain is not able to associate with Ras2, but it does associate with Cdc42 and binds to a different face than does Ste20. RA domain function can be replaced by the nine C-terminal, plasma membrane-targeting residues (KKSKKCAIL) of Cdc42, and membrane-targeted Ste50 also suppresses the signaling deficiency of cdc42 alleles specifically defective in invasive growth. Thus, Ste50 serves as an adaptor to tether Ste11 to the plasma membrane and can do so via association with Cdc42, thereby permitting the encounter of Ste11 with activated Ste20.  相似文献   

6.
In Saccharomyces cerevisiae, the Rho-type small GTPase Cdc42 is activated by its guanine-nucleotide exchange factor Cdc24 to polarize the cell for budding and mating. A multidomain protein Bem1 interacts not only with Cdc42 but also with Cdc24 and the effectors of Cdc42, including the p21-activated kinase Ste20, to function as a scaffold for cell polarity establishment. Although Bem1 interacts with Cdc24 and Ste20 via its PB1 and the second SH3 domains (SH3b), respectively, it is unclear how Bem1 binds Cdc42. Here we show that a region comprising the SH3b and its C-terminal flanking segment termed CI (SH3b-CI) directly interacts with Cdc42. A dual-bait reverse two-hybrid approach revealed that the CI is critical to the interaction: N253D substitution in the CI abolishes the binding of the SH3b-CI to Cdc42 but not to the proline-rich region of Ste20, whereas W192K substitution in the SH3b has the opposite effect. Nevertheless, the SH3b-CI interacts with Ste20 proline-rich region and Cdc42 in a mutually exclusive manner. The N253D substitution renders cellular growth temperature-sensitive and suppresses mating. The W192K-induced mating defect is exacerbated by the N253D substitution and suppressed by increasing the dosage of Ste20 provided that the CI is intact. Intriguingly, Cdc42 can mediate an indirect interaction of the SH3b-CI to the CRIB domain of Ste20. These results suggest that the SH3b and the CI collaborate in tethering of Ste20 to Bem1 to ensure efficient mating pheromone signaling.  相似文献   

7.
The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP(2)-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase-dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein-protein and protein-membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex.  相似文献   

8.
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both gain-of-function and loss-of-function alleles in four key genes involved in the SHO1 branch, namely SHO1, CDC42, STE50, and STE11. These mutants were characterized using an HOG-dependent reporter gene, 8xCRE-lacZ. We found that Cdc42, in addition to binding and activating the PAK-like kinases Ste20 and Cla4, binds to the Ste11-Ste50 complex to bring activated Ste20/Cla4 to their substrate Ste11. Activated Ste11 and its HOG pathway-specific substrate, Pbs2, are brought together by Sho1; the Ste11-Ste50 complex binds to the cytoplasmic domain of Sho1, to which Pbs2 also binds. Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2.  相似文献   

9.
10.
The Saccharomyces cerevisiae guanine nucleotide exchange factor Cdc24 regulates polarized growth by binding to Cdc42, a Rho-type GTPase that has many effectors, including Ste20 kinase, which activates multiple MAPK cascades. Here, we show that Cdc24 promotes MAPK signaling during mating through interactions with Ste5, a scaffold that must shuttle through the nucleus and bind to the beta subunit (Ste4) of a G protein for Ste20 to activate the tethered MAPK cascade. Ste5 was basally recruited to growth sites of G1 phase cells independently of Ste4. Loss of Cdc24 inhibited nuclear import and blocked basal and pheromone-induced recruitment of Ste5. Ste5 was not basally recruited and the MAPK Fus3 was not basally activated in the presence of a Cdc24 mutant (G168D) that still activates Cdc42, suggesting that Cdc24 regulates Ste5 and the associated MAPK cascade through a function that is not dependent on its guanine nucleotide exchange factor activity. Consistent with this, Cdc24 bound Ste5 and coprecipitated with Ste4 independently of Far1 and Ste5. Loss of Cdc24 decreased Ste5-Ste4 complex formation, and loss of Ste4 stimulated Cdc24-Ste5 complex formation. Collectively, these findings suggest that Cdc24 mediates site-specific localization of Ste5 to a heterotrimeric G protein and may therefore ensure localized activation of the associated MAPK cascade.  相似文献   

11.
In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.  相似文献   

12.
Mixed lineage kinase 3 (MLK3) functions as a mitogen-activated protein kinase kinase kinase to activate multiple mitogen-activated protein kinase pathways. Our current studies demonstrate that lack of MLK3 blocks signaling of activated Cdc42 to c-Jun N-terminal kinase, giving strong support for the idea that Cdc42 is a physiological activator of MLK3. We show herein that Cdc42, in a prenylation-dependent manner, targets MLK3 from a perinuclear region to membranes, including the plasma membrane. Cdc42-induced membrane targeting of MLK3 is independent of MLK3 catalytic activity but depends upon an intact Cdc42/Rac-interactive binding motif, consistent with MLK3 membrane translocation being mediated through direct binding of Cdc42. Phosphorylation of the activation loop of MLK3 requires MLK3 catalytic activity and is induced by Cdc42 in a prenylation-independent manner, arguing that Cdc42 binding is sufficient for activation loop autophosphorylation of MLK3. However, membrane targeting is necessary for full activation of MLK3 and maximal signaling to JNK. We previously reported that MLK3 is autoinhibited through an interaction between its N-terminal SH3 domain and a proline-containing sequence found between the leucine zipper and the CRIB motif of MLK3. Thus we propose a model in which GTP-bound Cdc42/Rac binds MLK3 and disrupts SH3-mediated autoinhibition leading to dimerization and activation loop autophosphorylation. Targeting of this partially active MLK3 to membranes likely results in additional phosphorylation events that fully activate MLK3 and its ability to maximally signal through the JNK pathway.  相似文献   

13.
R. Akada  L. Kallal  D. I. Johnson    J. Kurjan 《Genetics》1996,143(1):103-117
The Saccharomyces cerevisiae G protein βγ dimer, Ste4p/Ste18p, acts downstream of the α subunit, Gpa1p, to activate the pheromone response pathway and therefore must interact with a downstream effector. Synthetic sterile mutants that exacerbate the phenotype of ste4-ts mutations were isolated to identify proteins that functionally interact with Ste4p. The identification of a ste18 mutant indicated that this screen could identify proteins that interact directly with Ste4p. The other mutations were in STE5 and the STE20 kinase gene, which act near Ste4p in the pathway, and a new gene called STE21. ste20 null mutants showed residual mating, suggesting that another kinase may provide some function. Overexpression of Ste5p under galactose control activated the pheromone response pathway. This activation was dependent on Ste4p and Ste18p and partially dependent on Ste20p. These results cannot be explained by the linear pathway of Ste4p -> Ste20p -> Ste5p. Overexpression of Cdc42p resulted in a slight increase in pheromone induction of a reporter gene, and overexpression of activated forms of Cdc42p resulted in a further twofold increase. Mutations in pheromone response pathway components did not suppress the lethality associated with the activated CDC42 mutations, suggesting that this effect is independent of the pheromone response pathway.  相似文献   

14.
Raitt DC  Posas F  Saito H 《The EMBO journal》2000,19(17):4623-4631
The adaptive response to hyperosmotic stress in yeast, termed the high osmolarity glycerol (HOG) response, is mediated by two independent upstream pathways that converge on the Pbs2 MAP kinase kinase (MAPKK), leading to the activation of the Hog1 MAP kinase. One branch is dependent on the Sho1 transmembrane protein, whose primary role was found to be the binding and translocation of the Pbs2 MAPKK to the plasma membrane, and specifically to sites of polarized growth. The yeast PAK homolog Ste20 is essential for the Sho1-dependent activation of the Hog1 MAP kinase in response to severe osmotic stress. This function of Ste20 in the HOG pathway requires binding of the small GTPase Cdc42. Overexpression of Cdc42 partially complements the osmosensitivity of ste20Delta mutants, perhaps by activating another PAK-like kinase, while a dominant-negative Cdc42 mutant inhibited signaling through the SHO1 branch of the HOG pathway. Since activated Cdc42 translocates Ste20 to sites of polarized growth, the upstream and downstream elements of the HOG pathway are brought together through the membrane targeting function of Sho1 and Cdc42.  相似文献   

15.
STE20 encodes a protein kinase related to mammalian p65Pak which functions in several signal transduction pathways in yeast, including those involved in pseudohyphal and invasive growth, as well as mating. In addition, Ste20 plays an essential role in cells lacking Cla4, a kinase with significant homology to Ste20. It is not clear how the activity of Ste20 is regulated in response to these different signals in vivo, but it has been demonstrated recently that binding of the small GTP binding protein Cdc42 is able to activate Ste20 in vitro. Here we show that Ste20 functionally interacts with Cdc42 in a GTP-dependent manner in vivo: Ste20 mutants that can no longer bind Cdc42 were unable to restore growth of ste20 cla4 mutant cells. They were also defective for pseudohyphal growth and agar invasion, and displayed reduced mating efficiency when mated with themselves. Surprisingly, however, the kinase activity of such Ste20 mutants was normal when assayed in vitro. Furthermore, these alleles were able to fully activate the MAP kinase pathway triggered by mating pheromones in vivo, suggesting that binding of Cdc42 and Ste20 was not required to activate Ste20. Wild-type Ste20 protein was visualized as a crescent at emerging buds during vegetative growth and at shmoo tips in cells arrested with alpha-factor. In contrast, a Ste20 mutant protein unable to bind Cdc42 was found diffusely throughout the cytoplasm, suggesting that Cdc42 is required to localize Ste20 properly in vivo.  相似文献   

16.
Phospholipase D1 (PLD1), which is the product of the SPO14 gene, has been shown to play a role in the process of polarized cell growth (PCG) during the pheromone response in Saccharomyces cerevisiae. PLD1 hydrolyzes phosphatidylcholine to produce phosphatidic acid (PA) and a free choline headgroup. This study investigated the interactions of PLD1 and PA with two proteins known to be involved in the cellular signaling leading to PCG in yeast, the small GTPase Cdc42p and the PAK family kinase Ste20p. Constitutively activated Cdc42p stimulates PLD1 activity. Protein-lipid binding blots confirmed the specific binding of Ste20p to the PLD1 product, PA. Finally, kinase activity assays provided evidence for the stimulation of Ste20p by PA. These findings highlight the important interactions among PLD1, Cdc42p and Ste20p during PCG in S. cerevisiae.  相似文献   

17.
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.  相似文献   

18.
19.
BACKGROUND: Rac and Cdc42 are members of the Rho family of small GTPases. They modulate cell growth and polarity, and contribute to oncogenic transformation by Ras. The molecular mechanisms underlying these functions remain elusive, however. RESULTS: We have identified a novel effector of Rac and Cdc42, hPar-6, which is the human homolog of a cell-polarity determinant in Caenorhabditis elegans. hPar-6 contains a PDZ domain and a Cdc42/Rac interactive binding (CRIB) motif, and interacts with Rac1 and Cdc42 in a GTP-dependent manner. hPar-6 also binds directly to an atypical protein kinase C isoform, PKCzeta, and forms a stable ternary complex with Rac1 or Cdc42 and PKCzeta. This association results in stimulation of PKCzeta kinase activity. Moreover, hPar-6 potentiates cell transformation by Rac1/Cdc42 and its interaction with Rac1/Cdc42 is essential for this effect. Cell transformation by hPar-6 involves a PKCzeta-dependent pathway distinct from the pathway mediated by Raf. CONCLUSIONS: These findings indicate that Rac/Cdc42 can regulate cell growth through Par-6 and PKCzeta, and suggest that deregulation of cell-polarity signaling can lead to cell transformation.  相似文献   

20.
Distinct MAP kinase pathways in yeast share several signaling components , including the PAK Ste20 and the MAPKKK Ste11, yet signaling is specific. Mating pheromones trigger an initial step in which Ste20 activates Ste11 , and this requires plasma membrane recruitment of the MAP kinase cascade scaffold protein, Ste5 . Here, we demonstrate an additional role for Ste5 membrane localization. Once Ste11 is activated, signaling through the mating pathway remains minimal but is substantially amplified when Ste5 is recruited to the membrane either by the Gbetagamma dimer or by direct membrane targeting, even to internal membranes. Ste11 signaling is also amplified by Ste5 oligomerization and by a hyperactivating mutation in the Ste7 binding region of Ste5. We suggest a model in which membrane recruitment of Ste5 concentrates its binding partners and thereby amplifies signaling through the kinase cascade. We find similar behavior in the osmotically responsive HOG pathway. Remarkably, while both pheromone and hyperosmotic stimuli amplify signaling from constitutively active Ste11, the resulting signaling output remains pathway specific. These findings suggest a common mode of regulation in which pathway stimuli both initiate and amplify MAP kinase cascade signaling. The regulation of rate-limiting steps that lie after a branchpoint from shared components helps ensure signaling specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号