首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mayer ML 《Neuron》2005,45(4):539-552
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.  相似文献   

2.
Ionotropic glutamate receptors are key players in fast excitatory synaptic transmission within the central nervous system. These receptors have been divided into three subfamilies: the N-methyl-d-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and kainate receptors. Kainate has previously been crystallized with the ligand binding domain (LBD) of AMPA receptors (GluA2 and GluA4) and kainate receptors (GluK1 and GluK2). Here, we report the structures of the kainate receptor GluK3 LBD in complex with kainate and GluK1 LBD in complex with kainate in the absence of glycerol. Kainate introduces a conformational change in GluK3 LBD comparable to that of GluK2, but different from the conformational changes induced in GluA2 and GluK1. Compared to their domain closures in a glutamate bound state, GluA2 and GluK1 become more open and kainate induces a domain closure of 60% and 62%, respectively, relative to glutamate (100%). In GluK2 and GluK3 with kainate, the domain closure is 88% and 83%, respectively. In previously determined structures of GluK1 LBD in complex with kainate, glycerol is present in the binding site where it bridges interlobe residues and thus, might contribute to the large domain opening. However, the structure of GluK1 LBD with kainate in the absence of glycerol confirms that the observed domain closure is not an artifact of crystallization conditions. Comparison of the LBD structures with glutamate and kainate reveals that contacts are lost upon binding of kainate in the three kainate receptors, which is in contrast to the AMPA receptors where similar contacts are seen. It was revealed by patch clamp electrophysiology studies that kainate is a partial agonist at GluK1 with 36% efficacy compared to glutamate, which is in between the published efficacies of kainate at GluK2 and AMPA receptors. The ranking of efficacies seems to correlate with LBD domain closures.  相似文献   

3.
The apo state structure of the isolated ligand binding domain of the GluR6 subunit and the conformational changes induced by agonist binding to this protein have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances show that agonist binding induces cleft closure, and the extent of cleft closure is proportional to the extent of activation over a wide range of activations, thus establishing that the cleft closure conformational change is one of the mechanisms by which the agonist mediates receptor activation. The LRET distances also provide insight into the apo state structure, for which there is currently no crystal structure available. The distance change between the glutamate-bound state and the apo state is similar to that observed between the glutamate-bound and antagonist UBP-310-bound form of the GluR5 ligand binding domain, indicating that the cleft for the apo state of the GluR6 ligand binding domain should be similar to the UBP-310-bound form of GluR5. This observation implies that te apo state of GluR6 undergoes a cleft closure of 29-30 degrees upon binding full agonists, one of the largest observed in the glutamate receptor family.  相似文献   

4.
Ionotropic glutamate receptors are essential for fast synaptic nerve transmission. Recent x-ray structures for the ligand-binding (S1S2) region of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptor have suggested how differences in protein/ligand interactions may determine whether a ligand will behave as a full agonist. We have used multiple molecular dynamics simulations of 2-5 ns duration to explore the structural dynamics of GluR2 S1S2 in the presence and absence of glutamate and in a complex with kainate. Our studies indicate that not only is the degree of domain closure dependent upon interactions with the ligand, but also that protein/ligand interactions influence the motion of the S2 domain with respect to S1. Differences in domain mobility between the three states (apo-S1S2, glutamate-bound, and kainate-bound) are surprisingly clear-cut. We discuss how these changes in dynamics may provide an explanation relating the mechanism of transmission of the agonist-binding event to channel opening. We also show here how the glutamate may adopt an alternative mode of binding not seen in the x-ray structure, which involves a key threonine (T480) side chain flipping into a new conformation. This new conformation results in an altered pattern of hydrogen bonding at the agonist-binding site.  相似文献   

5.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

6.
Upon agonist binding, the bilobate ligand-binding domains of the ionotropic glutamate receptors (iGluR) undergo a cleft closure whose magnitude correlates broadly with the efficacy of the agonist. AMPA (alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid) and kainate are nonphysiological agonists that distinguish between subsets of iGluR. Kainate acts with low efficacy at AMPA receptors. Here we report that the structure-based mutation L651V converts the GluR4 AMPA receptor into a dual-specificity AMPA/kainate receptor fully activated by both agonists. To probe the stereochemical basis of partial agonism, we have also investigated the correlation between agonist efficacy and a series of vibrational and fluorescence spectroscopic signals of agonist binding to the corresponding wild-type and mutant GluR4 ligand-binding domains. Two signals track the extent of channel activation: the maximal change in intrinsic tryptophan fluorescence and the environment of the single non-disulfide bonded C426, which appears to probe the strength of interactions with the ligand alpha-amino group. Both of these signals arise from functional groups that are poised to detect changes in the extent of channel cleft closure and thus provide additional information about the coupling between conformational changes in the ligand-binding domain and activation of the intact receptor.  相似文献   

7.
In the present report, using vibrational spectroscopy we have probed the ligand-protein interactions for full agonists (glutamate and alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA)) and a partial agonist (kainate) in the isolated ligand-binding domain of the GluR2 subunit of the glutamate receptor. These studies indicate differences in the strength of the interactions of the alpha-carboxylates for the various agonists, with kainate having the strongest interactions and glutamate having the weakest. Additionally, the interactions at the alpha-amine group of the agonists have also been probed by studying the environment of the non-disulfide-bonded Cys-425, which is in close proximity to the alpha-amine group. These investigations suggest that the interactions at the alpha-amine group are stronger for full agonists such as glutamate and AMPA as evidenced by the increase in the hydrogen bond strength at Cys-425. Partial agonists such as kainate do not change the environment of Cys-425 relative to the apo form, suggesting weak interactions at the alpha-amine group of kainate. In addition to probing the ligand environment, we have also investigated the changes in the secondary structure of the protein. Results clearly indicate that full agonists such as glutamate and AMPA induce similar secondary structural changes that are different from those of the partial agonist kainate; thus, a spectroscopic signature is provided for identifying the functional consequences of a specific ligand binding to this protein.  相似文献   

8.
Mendieta J  Gago F  Ramírez G 《Biochemistry》2005,44(44):14470-14476
Guanine nucleotides behave as competitive antagonists at ionotropic glutamate receptors and show neuroprotective activity in different experimental excitotoxicity paradigms, both in vivo and in cultured cell preparations. Taking 5'-GMP as the reference nucleotide, we have tried to understand how these molecules interact with the agonist-binding site of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor. Using a crystallographic model of the ligand-binding core of the GluR2 receptor in complex with kainate, we have previously analyzed the structural changes associated to the binding of agonists to the receptor and suggested a mechanism for the coupling of agonist binding to channel gating. In the present investigation we used the structure of the apo form of the receptor to probe the primary interactions between GMP and GluR2 by means of an automated docking program. A targeted molecular dynamics (TMD) simulation procedure was subsequently used to force the closing of the protein and to study the rearrangement of the ligand and surrounding amino acids. The resulting structure provides a plausible model of the nucleotide-receptor complex. Indirect support for the validity of our approach was obtained when the same methodology was shown to yield structures of the kainate-GluR2 and 6,7-dinitroquinoxaline-2,3-dione (DNQX)-GluR2 complexes that were in very good agreement with the published crystallographic structures. Both the stacking interaction between the phenyl ring of Tyr73 and the purine ring of GMP and a salt bridge between the phosphate group of GMP and Arg108 in the S1 domain, together with several hydrogen bonds, are proposed to secure the anchoring of GMP to the agonist-binding site. Unlike conventional competitive antagonists, such as DNQX, occupancy of the site by GMP still allows receptor segments S1 and S2 to close tightly around GMP without interacting with the critical residue Glu209 that triggers channel opening. Thus, GMP appears to be rather a false agonist than a competitive antagonist. This fact and the nature of the energy barriers that stabilize GMP bound to the closed form of the receptor provide an explanation for the unusual behavior of some guanine nucleotides in ligand-displacement experiments.  相似文献   

9.
Carbone AL  Plested AJ 《Neuron》2012,74(5):845-857
The kinetics of ligand gated ion channels are tuned to permit diverse roles in cellular signaling. To follow high-frequency excitatory synaptic input, postsynaptic AMPA-type glutamate receptors must recover rapidly from desensitization. Chimeras between AMPA and the related kainate receptors demonstrate that the ligand binding domains alone control the lifetime of the desensitized state. Mutation of nonconserved amino acids in the lower lobe (domain 2) of the ligand binding domain conferred slow recovery from desensitization on AMPA receptors, and fast recovery on kainate receptors. Single-channel recordings and a correlation between the rate of deactivation and the rate of recovery across panels of mutant receptors revealed that domain 2 also controls ion channel gating. Our results demonstrate that the same mechanism that ensures fast recovery also sharpens the response of AMPA channels to synaptically released glutamate.  相似文献   

10.
Ligand-gated ion channels undergo conformational changes that transfer the energy of agonist binding to channel opening. Within ionotropic glutamate receptor (iGluR) subunits, this process is initiated in their bilobate ligand binding domain (LBD) where agonist binding to lobe 1 favors closure of lobe 2 around the agonist and allows formation of interlobe hydrogen bonds. AMPA receptors (GluAs) differ from other iGluRs because glutamate binding causes an aspartate-serine peptide bond in a flexible part of lobe 2 to rotate 180° (flipped conformation), allowing these residues to form cross-cleft H-bonds with tyrosine and glycine in lobe 1. This aspartate also contacts the side chain of a lysine residue in the hydrophobic core of lobe 2 by a salt bridge. We investigated how the peptide flip and electrostatic contact (D655-K660) in GluA3 contribute to receptor function by examining pharmacological and structural properties with an antagonist (CNQX), a partial agonist (kainate), and two full agonists (glutamate and quisqualate) in the wildtype and two mutant receptors. Alanine substitution decreased the agonist potency of GluA3(i)-D655A and GluA3(i)-K660A receptor channels expressed in HEK293 cells and differentially affected agonist binding affinity for isolated LBDs without changing CNQX affinity. Correlations observed in the crystal structures of the mutant LBDs included the loss of the D655-K660 electrostatic contact, agonist-dependent differences in lobe 1 and lobe 2 closure, and unflipped D(A)655-S656 bonds. Glutamate-stimulated activation was slower for both mutants, suggesting that efficient energy transfer of agonist binding within the LBD of AMPA receptors requires an intact tether between the flexible peptide flip domain and the rigid hydrophobic core of lobe 2.  相似文献   

11.
12.
Binding of an agonist to the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionic acid (AMPA) receptor family of the glutamate receptors (GluRs) results in rapid activation of an ion channel. Continuous application results in a non-desensitizing response for agonists like kainate, whereas most other agonists, such as the endogenous agonist (S)-glutamate, induce desensitization. We demonstrate that a highly conserved tyrosine, forming a wedge between the agonist and the N-terminal part of the bi-lobed ligand-binding site, plays a key role in the receptor kinetics as well as agonist potency and selectivity. The AMPA receptor GluR2, with mutations in Tyr-450, were expressed in Xenopus laevis oocytes and characterized in a two-electrode voltage clamp setup. The mutation GluR2(Y450A) renders the receptor highly kainate selective, and rapid application of kainate to outside-out patches induced strongly desensitizing currents. When Tyr-450 was substituted with the larger tryptophan, the (S)-glutamate desensitization is attenuated with a 10-fold increase in steady-state/peak currents (19% compared with 1.9% at the wild type). Furthermore, the tryptophan mutant was introduced into the GluR2-S1S2J ligand binding core construct and co-crystallized with kainate, and the 2.1-A x-ray structure revealed a slightly more closed ligand binding core as compared with the wild-type complex. Through genetic manipulations combined with structural and electrophysiological analysis, we report that mutations in position 450 invert the potency of two central agonists while concurrently strongly shaping the agonist efficacy and the desensitization kinetics of the AMPA receptor GluR2.  相似文献   

13.
The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.  相似文献   

14.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, one subtype in the family of ionotropic glutamate receptors, are the main receptors responsible for excitatory signaling in the mammalian central nervous system. Previous studies utilitizing the isolated ligand binding domain of these receptors have provided insight into the role of specific ligand-protein interactions in mediating receptor activation. However, these studies relied heavily on the partial agonist kainate, in which the alpha-amine group is constrained in a pyrrolidine ring. Here we have studied a series of substituted and unsubstituted willardiines with primary alpha-amine groups similar to that of the full agonist glutamate whose activation can be varied depending on the size of the substituent. The specific ligand-protein interactions in the mechanism of partial agonism in this subtype were investigated using vibrational spectroscopy, and the large-scale conformational changes in the ligand binding domain were studied with fluorescence resonance energy transfer (FRET). These investigations show that the strength of the interaction at the alpha-amine group correlates with the extent of cleft closure and extent of activation, with the agonist of higher efficacy showing larger cleft closure and stronger interactions at this group, suggesting that this is one of the mechanisms by which the agonist controls receptor activation.  相似文献   

15.
The effects of divalent cations on Ca2+-impermeable containing (GluR2 subunit) MPA receptors of hippocampal pyramidal neurones isolated from rat brain was studied using patch-clamping. Ca2+, Mg2+, Mn2+, Co2+, Ni2+ and Zn2+ inhibited currents induced by kainate and glutamate. Inhibition was fast, reversible and voltage independent. The rank order of activities was Ni2+ > Zn2+ > Co2+ > Ca2+ > Mn2+ > Mg2+. Cyclothiazide (0.1 mm) significantly reduced inhibition by divalent cations and 6, 7 dinitroquinoxaline-2.3-dione (DNQX). However, high concentrations of Ni2+ and DNQX inhibited AMPA receptors even in the presence of cyclothiazide. The inhibitory effect of divalent cations as well as DNQX was counteracted by an increase in agonist concentration. In the presence of divalent cations the EC50 values of kainate and glutamate were increased, but the maximal response was not changed. An increase in agonist concentration induced a parallel shift in the concentration-inhibition curve for a divalent cation. These data suggest a competitive-like type of inhibition. However, an increase in agonist concentration reduced the inhibitory action of Ni2+ less than that of DNQX. This gave evidence against direct competition between divalent cations and AMPA receptor agonists. A 'complex-competition' hypothesis was proposed to explain the inhibitory action of divalent cations; it is suggested that divalent cations form ion-agonist complexes, which compete with free agonist for agonist-binding sites on AMPA receptors.  相似文献   

16.
The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy and domain closure. A weakly efficacious partial agonist of very low potency for homomeric iGluR5 kainate receptors, 8,9-dideoxyneodysiherbaine (MSVIII-19), induced a fully closed iGluR5 ligand-binding core. The degree of relative domain closure, ∼30°, was similar to that we resolved with the structurally related high affinity agonist dysiherbaine and to that of l-glutamate. The pharmacological activity of MSVIII-19 was confirmed in patch clamp recordings from transfected HEK293 cells, where MSVIII-19 predominantly inhibits iGluR5-2a, with little activation apparent at a high concentration (1 mm) of MSVIII-19 (<1% of mean glutamate-evoked currents). To determine the efficacy of the ligand quantitatively, we constructed concentration-response relationships for MSVIII-19 following potentiation of steady-state currents with concanavalin A (EC50 = 3.6 μm) and on the nondesensitizing receptor mutant iGluR5-2b(Y506C/L768C) (EC50 = 8.1 μm). MSVIII-19 exhibited a maximum of 16% of full agonist efficacy, as measured in parallel recordings with glutamate. Molecular dynamics simulations and electrophysiological recordings confirm that the specificity of MSVIII-19 for iGluR5 is partly attributable to interdomain hydrogen bond residues Glu441 and Ser721 in the iGluR5-S1S2 structure. The weaker interactions of MSVIII-19 with iGluR5 compared with dysiherbaine, together with altered stability of the interdomain interaction, may be responsible for the apparent uncoupling of domain closure and channel opening in this kainate receptor subunit.Ionotropic glutamate receptors (iGluRs)3 are central to fast excitatory synaptic transmission in the central nervous system and are involved in numerous physiological and pathophysiological processes. The iGluRs consist of three different classes of receptors, N-methyl-d-aspartic acid (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors (1), which are assembled as tetramers in a dimer of dimers configuration (2, 3). These receptors can be considered as multidomain proteins, composed of an extracellular N-terminal domain, a ligand-binding core made of discontinuous S1 and S2 segments that form two lobes (domains D1 and D2), three transmembrane-spanning regions (M1–M3) with a re-entrant loop between M1 and M2, and finally a cytoplasmic region (1).Ligand-binding cores of iGluRs assume tertiary structures in solution that reproduce the pharmacological profiles of full-length receptors. Crystallographic studies of ligand-binding core complexes from representative members of all three iGluR subtypes (46) as well as the ligand-binding core of the structurally related δ2 subunit in complex with d-serine (7) have yielded unprecedented insight into structural correlates of iGluR function. Binding of agonists to iGluR ligand-binding cores can be described as a “Venus flytrap” mechanism. In the resting state, the ligand-binding core is present in an open form that is stabilized by antagonists (4, 8, 9). When an agonist binds to the ligand-binding core, a rotational change in conformation occurs, resulting in domain closure of the D1 and D2 lobes around a central hinge region (4, 6). In full-length receptors, this domain closure is thought to result in the opening of the ion channel (receptor activation). The extents of domain closure of ligand-binding cores of AMPA and kainate receptor subunits are correlated with the activation and the desensitization of the receptor (9, 10).However, previous studies have questioned the association between the degree of domain closure of the ligand-binding core and channel opening or agonist efficacy. For example, AMPA was shown to induce a more closed structure of the ligand-binding core of the mutated iGluR2(L650T) than was expected from its partial agonist efficacy (11, 12). Also, no correlation between domain closure and agonist efficacy has been demonstrated for the NR1 subunit of NMDA receptors (13).In this study, we present the first example of a nonmutated kainate receptor that lacks the correlation between domain closure and efficacy. We tested if two structurally related kainate receptor ligands, one an agonist and one described previously as an antagonist (14), conformed to the prevailing structural model of ligand-induced activity. The high affinity agonist dysiherbaine (DH) is a natural excitotoxin originally isolated from a marine sponge (15, 16), whereas 8,9-dideoxyneodysiherbaine (MSVIII-19) is a synthetic analog that inhibits activation of iGluR5 receptors (14). To investigate receptor interactions with the two closely related compounds as well as the degree of domain closure introduced by the compounds, we determined the crystal structures of DH and MSVIII-19 in complex with the ligand-binding core of the kainate receptor subunit iGluR5 (iGluR5-S1S2). These two structures, along with functional studies, provide novel insights into the mechanism of kainate receptor activation, inhibition, and desensitization.  相似文献   

17.
Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1–5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6 Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.  相似文献   

18.
Horning MS  Mayer ML 《Neuron》2004,41(3):379-388
Ionotropic glutamate receptors are tetramers, the isolated ligand binding cores of which assemble as dimers. Previous work on nondesensitizing AMPA receptor mutants, which combined crystallography, ultracentrifugation, and patch-clamp recording, showed that dimer formation by the ligand binding cores is required for activation of ion channel gating by agonists. To define the mechanisms responsible for stabilization of dimer assembly in native AMPA receptors, contacts between the adjacent ligand binding cores were individually targeted by amino acid substitutions, using the GluR2 crystal structure as a guide to design mutants. We show that disruption of a salt bridge, hydrogen bond network, and intermolecular van der Waals contacts between helices D and J in adjacent ligand binding cores greatly accelerates desensitization. Conservation of these contacts in AMPA and kainate receptors indicates that they are important determinants of dimer stability and that the dimer interface is a key structural element in the gating mechanism of these glutamate receptor families.  相似文献   

19.
Neurotoxicity has often been associated with glutamate receptor stimulation and neuroprotection with glutamate receptor blockade. However, the relationship may be much more complex. We dissociated cells from the rat neocortical anlage at an early stage of prenatal development (embryonic day 14). The cells were exposed in vitro to agonists and antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate and N-methyl-D-aspartate (NMDA) receptors and the effects on differentiation and survival have been quantitatively and qualitatively evaluated. NMDA and the non-competitive antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801) had the expected effects (the agonist decreasing and the antagonist increasing neuronal survival) when applied at a relatively advanced stage of in vitro maturation, but no significant effect in either direction at earlier stages. Kainate also had an effect on cell survival only at an advanced stage (where it decreased the number of cells). However, this cannot be attributed to the absence of functional AMPA/kainate receptors at earlier stages, since: (1) cells could be loaded with cobalt; and (2) early application of kainate dramatically reduced the number of cobalt-positive cells. Furthermore, exposure at early stages to 6,7-dinitroquinoxaline-2,3-dione (DNQX), or GYKI 53655, (competitive and non-competitive AMPA receptor antagonists, respectively) strongly reduced cell survival. The effects were concentration- and time-dependent with a complex time--curve. The decrease in cell number was maximal after antagonist application from 2 to 5 days in vitro. The effects of DNQX could be cancelled by co-application of kainate. When exposed to an antagonist at later stages of development, the number of surviving cells gradually approached control values and finally became significantly higher. Our results suggest that cells of the developing neocortex (and perhaps newly generated cells in the adult brain) require at different stages of their development, an appropriate level of AMPA/kainate receptor activation.  相似文献   

20.
Gonzalez J  Rambhadran A  Du M  Jayaraman V 《Biochemistry》2008,47(38):10027-10032
The structural investigations using the soluble ligand binding domain of the AMPA subtype of the glutamate receptor have provided invaluable insight into the mechanistic pathway by which agonist binding to this extracellular domain mediates the formation of cation-selective channels in this protein. These structures, however, are in the absence of the transmembrane segments, the primary functional component of the protein. Here, we have used a modified luminescence resonance energy transfer based method to obtain distance changes due to agonist binding in the ligand binding domain in the presence of the transmembrane segments. These distance changes show that the cleft closure conformational change observed in the isolated ligand binding domain upon binding agonist is conserved in the receptor with the channel segments, thus establishing that the isolated ligand binding domain is a good model of the domain in the receptor containing the transmembrane segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号