首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

2.
The high plasma cholesterol concentration of the genetically hypercholesterolemic RICO rats fed a low cholesterol base diet (1.28 mg/ml) compared to that of SW rats (0.73 mg/ml) results from an increase in the cholesterol content of the d greater than or equal to 1.006 lipoproteins. Since the composition of each type of lipoprotein is similar in the two groups of rats, the RICO rat, therefore, is hyperlipoproteinemic with an increase in the number of lipoprotein particles, except VLDL and chylomicrons. Furthermore, the apolipoprotein E (apoE) content in the d less than or equal to 1.063 lipoproteins is higher in RICO than in SW rats, while that of apoA-I in HDL is lower. In rats fed 0.5% cholesterol base diet, cholesterolemia doubles in the two groups (SWCH, 1.32 +/- 0.10 mg/ml; RICOCH, 2.10 +/- 0.09 mg/ml). This hypercholesterolemia is due to an increased cholesterol content in VLDL and chylomicrons. These lipoproteins carry 60% (in SWCH) and 45% (in RICOCH) of the plasma cholesterol and are cholesterol-enriched compared with the lipoproteins observed in rats fed the base diet. In RICOCH, 24% of the plasma cholesterol is found in apoE-rich LDL2 (1.040 less than or equal to d less than or equal to 1.063), whereas in SWCH, this fraction contains only 11% of the plasma cholesterol. Finally, as before with the base diet, RICOCH shows an apoE enrichment of the d less than or equal to 1.063 lipoproteins and an apoA-I depletion of HDL compared to SWCH. These data suggest that hypercholesterolemia of the RICO rats results from a modification in the turnover of apoE-containing lipoproteins.  相似文献   

3.
Hyperalphalipoproteinemia, characterized by increased plasma concentrations of apoA-I and of HDL lipid and protein, was observed in rats treated with triiodothyronine (T(3)) for 7 days. The increase in the plasma HDL apoproteins was general for apoC, apoE plus A-IV, and apoA-I, as determined by isoelectric focusing. Hypotriglyceridemia, characterized by decreased concentrations of VLDL and apoB, was also observed in the hyperthyroid state. Although in the mildly hypothyroid animals (propylthiouracil-treated), hepatic metabolism of free fatty acid is shifted toward esterification to triglyceride and VLDL formation, as we reported previously, plasma HDL and apoA-I concentrations were not different from control plasma values, while the d 1.006-1.063 g/ml (IDL + LDL) lipoprotein fraction tended to be increased. In general, the proportion of apoE in the (IDL + LDL) fraction of the hypothyroid rat was greater than in controls and hyperthyroid animals, while the proportion of apoE tended to be lower in VLDL from both hypo- and hyperthyroid rats than in VLDL from controls. An enhanced release of apoA-I by perfused livers isolated from rats treated with T(3) was also observed; this enhanced output of apoA-I may explain, in part, the hyperalphalipoproteinemia observed in these rats. The depressed net output of apoA-I in vitro by perfused livers from rats treated with propylthiouracil (PTU) was not expressed in a statistically significant diminished plasma concentration of HDL or apoA-I in the intact animals. Treatment with T(3) also resulted in modification of the content of essential fatty acids in various lipid classes. Linoleic acid residues were significantly reduced and arachidonic acid content was increased in plasma phospholipids and esterified cholesterol in T(3)-treated rats. However, the relative fatty acid composition of unesterified fatty acids and triglyceride fatty acids was not altered by T(3) treatment. PTU treatment had no effect on fatty acid distribution in any of the plasma lipids. Secretion of biliary lipids was increased in perfused livers from T(3)-treated rats, while treatment with PTU did not affect release of lipids in the bile. These observations suggest a regulatory role for thyroid hormones that determine concentration and composition of plasma HDL and other lipoproteins.-Wilcox, H. G., W. G. Keyes, T. A. Hale, R. Frank, D. W. Morgan, and M. Heimberg. Effects of triiodothyronine and propylthiouracil on plasma lipoproteins in male rats.  相似文献   

4.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

5.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

6.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

7.
Plasma lipoproteins were investigated during the active clinical phase of experimental allergic encephalomyelitis (EAE), a demyelinating disease of the central nervous system. Three groups of Lewis rats were compared: untreated controls, Freund's adjuvant-treated controls (FAC), and rats receiving one injection of myelin in Freund's adjuvant. After onset of clinical symptoms, 12 and 16 days after injection, there were higher concentrations of cholesterol and low and high density lipoproteins (LDL and HDL) in EAE plasma. The increase was due to apoE-containing HDL1 and HDL, according to density, particle size, and apolipoprotein compositions of isolated lipoproteins and immunoblots of whole plasmas after gradient gel electrophoresis. In EAE, the cholesterol-to-apoprotein ratio was increased and the low density lipoprotein distribution profile was shifted toward lower density. The Freund's adjuvant-treated control rats showed some changes qualitatively similar to those of EAE, albeit far smaller in magnitude. Changes in LDL in EAE might be related in part to lowered plasma very low density lipoproteins (VLDL); however, weight loss in control animals did not increase plasma cholesterol or apoE relative to apoA-I. Lesions in the central nervous system and/or activation of macrophages might be causally related to the large increase in plasma apoE. The major changes in apoE-containing lipoproteins are undoubtedly significant for the altered immune function in EAE.  相似文献   

8.
The distribution of apolipoproteins (apo) A-I, A-IV, and E in sera of fed and fasted rats was studied using various methods for the isolation of lipoproteins. Serum concentrations of apoA-I and apoA-IV decreased significantly during fasting (16 and 31%, respectively), while apoE concentrations remained essentially the same. Chromatography of sera on 6% agarose columns showed that apoA-IV is present on HDL and as so-called "free" apoA-IV. The concentration of "free" apoA-IV decreased six- to seven-fold during fasting, explaining the decrease in total serum apoA-IV. Serum apoA-I and apoE are almost exclusively associated with HDL-sized particles. When sera are centrifuged at a density of 1.21 g/ml, marked quantities of apoA-I (8-9%) and apoE (11-22%) are recovered in the "lipoprotein-deficient" infranatant, suggesting that ultracentrifugation affects the integrity of serum HDL. The nature of the chromatographically separated carriers of serum apoA-IV was investigated by quantitative immunoprecipitation. From these studies, it is concluded that apoA-IV in rat serum is present in at least three fractions: 1) particles with the size and composition of HDL, containing both apoA-I and apoA-IV and possibly minor quantities of apoE; 2) HDL-sized particles containing apoA-IV, but no apoA-I or apoE; 3) "free" apoA-IV probably containing small amounts of bound cholesterol and phospholipid.  相似文献   

9.
Gemfibrozil (Lopid) is a new plasma lipid-regulating drug that decreases very low and low density lipoprotein (VLD/LDL) and increases high density lipoprotein (HDL) concentrations in man. The present experiments tested the effects of gemfibrozil on plasma lipoproteins and apolipoproteins in rats fed high fat/high cholesterol diets. Compared to chow-fed rats, cholesterol feeding for 2 weeks (20% olive oil/2% cholesterol) produced the expected increases in VLDL and intermediate density lipoprotein (IDL) while lowering plasma HDL. This was documented by using three methods of lipoprotein isolation: sequential ultracentrifugation, density gradient ultracentrifugation, and agarose gel filtration. Gemfibrozil gavaged at 50 mg/kg per day for 2 weeks during cholesterol feeding prevented these changes such that lipoprotein patterns were similar to those in chow-fed animals. Whole plasma apoE and apoA-I concentrations were decreased and apoB increased due to cholesterol feeding as determined by electroimmunoassay, but again gemfibrozil treatment prevented these diet-induced alterations. Gradient polyacrylamide gel electrophoresis patterns of the total d less than 1.21 g/ml lipoprotein fractions reflected the changes in apolipoprotein concentrations and further demonstrated a greater increase of apoBl compared to apoBh in cholesterol-fed rats. Gemfibrozil lowered the concentration of both apoB variants and prevented the shift of apoE from HDL to lower density lipoproteins. Changes in the distribution of apoE were confirmed using agarose gel column chromatography followed by electroimmunoassay. These methods also revealed a shift of apoA-IV from HDL to the d greater than 1.21 g/ml, lipoprotein-free fraction with gemfibrozil treatment when blood was taken from fasted or postabsorptive animals. Since it was also noted that in chow-fed rats more apoA-IV was present in the d greater than 1.21 g/ml fraction in the postabsorptive or fed state compared to fasted animals, it could be postulated that the shift of apoA-IV into this fraction in gemfibrozil-treated rats is related to an accelerated clearance of chylomicrons. It is concluded that gemfibrozil largely prevents the accumulation of abnormal lipoproteins in this model of dyslipoproteinemia, and that apoE may play a critical role in this normalization process.  相似文献   

10.
Lipoproteins, present in serum of chow-fed rats, were fractionated according to size by chromatography of serum on 6% agarose columns. The distributions of apolipoprotein (apo) A-I, E, and A-IV within the high density lipoprotein (HDL) size range (i.e., lipoprotein complexes smaller than low density lipoproteins) showed the existence of lipoprotein subclasses with different size and chemical composition. Sequential immunoprecipitations were performed on these fractions obtained by agarose column chromatography, using specific antisera against apoA-I, apoE, and apoA-IV. The resulting precipitates and supernatants were analyzed for cholesteryl esters, unesterified cholesterol, phospholipids, triglycerides, and specific lipoproteins. The following conclusions were drawn from these experiments. Sixty-three +/- 3% of apoE in the total HDL size range is present on a large particle (mol wt 750,000). This lipoprotein contains apoE as its sole protein constituent and is called LpE. Thirty-nine +/- 4% of the cholesterol found in the HDL size range is present in this fraction. The cholesterol:phospholipid ratio is 1:1.1. Sixty-nine +/- 8% of apoA-I in the total HDL size range is present on a smaller particle (mol wt 250,000). This apoA-I-HDL has apoA-I as its major protein component and possibly contains minor amounts of C apoproteins and A-II, but neither apoE nor apoA-IV. It contains 39 +/- 8% of the total cholesterol found in the HDL size range and the cholesterol:phospholipid ratio is 1:1.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The corpulent JCR:LA-cp rat (cp/cp) is a useful model for study of the metabolic consequences of obesity and hyperinsulinemia. To assess the effect of hyperinsulinemia on VLDL secretion in this model, we measured rates of secretion of VLDL in perfused livers derived from cp/cp rats and their lean littermates. Livers of cp/cp rats secreted significantly greater amounts of VLDL triglyceride and apolipoprotein, compared with lean littermates. The content of apoB, apoE, and apoCs in both perfusate and plasma VLDL was greater in the cp/cp rat, as was the apolipoprotein (apo)C, apoA-I, and apoA-IV content of plasma HDL. Triglyceride content was also greater in cp/cp livers, as was hepatic lipogenesis and expression of lipogenic enzymes and sterol regulatory element binding protein-1 (SREBP-1). Hepatic mRNAs for apoE, and apoA-I were higher in livers of cp/cp rats. In contrast, the steady state levels of apoC-II, apoC-III, and apoB mRNAs were unchanged. Thus, livers of obese hyperinsulinemic cp/cp JCR:LA-cp rats secrete a greater number of VLDL particles that are enriched in triglyceride, apoE, and apoC. Greater secretion of VLDL in the cp/cp rat in part results from higher endogenous fatty acid synthesis, which in turn may occur in response to increased expression of the lipogenic enzyme regulator SREBP-1c.  相似文献   

12.
Internalization of apoE-containing very low density protein (VLDL) by hepatocytes in vivo and in vitro leads to apoE recycling and resecretion. Because of the role of apoE in VLDL metabolism, apoE recycling may influence lipoprotein assembly or remnant uptake. However, apoE is also a HDL protein, and apoE recycling may be related to reverse cholesterol transport. To investigate apoE recycling, apoE(-/-) mouse hepatocytes were incubated (pulsed) with wild-type mouse lipoproteins, and cells and media were collected at chase periods up to 24 h. When cells were pulsed with VLDL, apoE was resecreted within 30 min. Although the mass of apoE in the media decreased with time, it could be detected up to 24 h after the pulse. Intact intracellular apoE was also detectable 24 h after the pulse. ApoE was also resecreted when cells were pulsed with HDL. When apoA-I was included in the chase media after a pulse with VLDL, apoE resecretion increased 4-fold. Furthermore, human apoE was resecreted from wild-type mouse hepatocytes after a pulse with human VLDL. Finally, apoE was resecreted from mouse peritoneal macrophages after pulsing with VLDL. We conclude that 1) HDL apoE recycles in a quantitatively comparable fashion to VLDL apoE; 2) apoE recycling can be modulated by extracellular apoA-I but is not affected by endogenous apoE; and 3) recycling occurs in macrophages as well as in hepatocytes, suggesting that the process is not cell-specific.  相似文献   

13.
An analysis of plasma lipids and lipoprotein fractions was performed over the course of the annual ovarian cycle of the female turtle, Chrysemys picta. Determinations of total plasma triglycerides, cholesterol, vitellogenin and apolipoprotein A-I (apoA-I) were made. The lipid and protein composition of the lipoprotein fractions [very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL) and very high density lipoprotein (VHDL)] were also observed over the same period. Plasma triglyceride and vitellogenin levels were significantly increased in the spring preovulatory period and fall recrudescent phase. Total plasma cholesterol levels were significantly elevated only at the onset of the fall recrudescent phase and apoA-I levels were highest during the postoviposition/ovarian arrest phase. The triglyceride content of VLDL was highest in preovulatory animals and there were apparent seasonal changes in the expression of apoA-I and apoE of HDL/VHDL. We conclude that the coordinate regulation of lipids and protein contributes to seasonal ovarian growth and clearance of lipids from plasma, both of which are most likely under hormonal control.  相似文献   

14.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

15.
Distribution of apolipoproteins A-I and B among intestinal lipoproteins   总被引:2,自引:0,他引:2  
Chylomicrons and very low density lipoproteins (VLDL) are produced by the intestine and these nascent particles are thought to be similar to their counterparts in intestinal lymph. To study the relationship between these lipoproteins within the cell and those secreted into the lamina propria and lymph, we have isolated enterocytes, lamina propria, and mesenteric lymph from rats while fasted and after corn oil feeding. Apolipoprotein A-I and B content were measured by radioimmunoassay in cell, lamina propria, and lymph fractions separated by Sepharose 6B and 10% agarose chromatography, and by KBr isopycnic density centrifugation. ApoA-I in the cell and the underlying lamina propria was found partly in those fractions in which chylomicron and very low density lipoproteins (chylo-VLDL) and high density lipoproteins (HDL) elute, but more abundantly where unassociated 125I-labeled apoA-I was eluted. In the lymph, however, 74% of apoA-I eluted in the HDL region and no peak of free apoA-I was found. ApoB and apoC-III within the enterocyte were found distributed in the position of particles eluting not only with chylomicrons and VLDL, but also in the regions corresponding to LDL and HDL. In the lamina propria and lymph, on the other hand, most of the apoB was found in the region of VLDL and chylomicrons. These results indicate that the patterns in lymph lipoproteins and the lamina propria do not exactly mirror the distribution of apoA-I and B among lipoproteins inside the cell. This may be because intracellular apoproteins may be unassociated with lipoproteins, or they could be associated with lipoproteins in various stages of assembly of protein with lipids. Furthermore, the apoprotein composition of intestinal lipoproteins is altered after secretion from the enterocyte. Finally, not all apoproteins seem to be secreted in association with identifiable lipoprotein particles from the enterocyte.  相似文献   

16.
We investigated the lipoprotein distribution and composition in cerebrospinal fluid (CSF) in a group of patients with Alzheimer's disease (AD) or affected by other types of dementia in comparison to non-demented controls. We found slightly decreased apolipoprotein (apo)E and cholesterol concentrations in CSF of AD patients and moderately increased apoA-I concentrations, while in patients suffering from other types of dementia the apoA-I CSF concentration was increased. ApoA-IV concentrations varied widely in human CSF, but were not associated with any clinical condition. HDL(2)-like apoE-containing lipoproteins represent the major lipoprotein fraction. In CSF of normal controls, only a minor HDL(3)-like apoA-I-containing lipoprotein fraction was observed; this fraction was more prevalent in AD patients. ApoA-II was recovered mostly in the HDL(3) density range, while apoA-IV was not associated with lipoproteins but appeared in a lipid-free form, co-localizing with LCAT immunoreactivity. Bi-dimensional analysis demonstrated pre-beta and alpha apoA-I-containing particles; apoE and apoA-II were detected only in alpha-migrating particles. ApoA-IV distributed both to pre-beta and gamma-migrating particles; the LCAT signal was co-localized in this gamma-migrating fraction. Enzymatically active LCAT was present in human CSF as well as PLTP activity and mass; no CETP mass was detected. In CSF from AD patients, LCAT activity was 50% lower than in CSF from normal controls. CSF lipoproteins induced a significant cholesterol efflux from cultured rat astrocytes, suggesting that they play an active role in maintaining the cholesterol homeostasis in brain cells.  相似文献   

17.
We have studied apolipoprotein synthesis, intracellular modification and secretion by primary adult rat hepatocyte cultures using continuous pulse or pulse chase labeling with [35S]methionine, immunoprecipitation and two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis. The flotation properties of the newly secreted apolipoproteins were studied by discontinuous density gradient ultracentrifugation and one- and two-dimensional polyacrylamide gel electrophoresis. These studies showed that rat hepatocyte apoE is modified intracellularly to produce minor isoproteins that differ in size and charge. One of these minor isoproteins represents a monosialated apoE form (apoE3s1). Similarly, apoCIII is modified intracellularly to produce a disialated apoCIII form (apoCIIIs2), whereas newly synthesized apoA-I and apoA-IV are not glycosylated and overlap on two-dimensional gels with the proapoA-I and the plasma apoA-IV form, respectively. Both unmodified and modified apolipoproteins are secreted into the medium. Separation of secreted apolipoproteins by density gradient ultracentrifugation has shown that 50% of apoE, 80% of apoA-I, and more than 90% of apoA-IV and apoCIII are secreted in a lipid-poor form, whereas apoB-100 and apoB-48 are 100% associated with lipids. ApoB-100 floats in the VLDL and IDL regions, whereas apoB-48 is found in all lipoprotein fractions. ApoE and small amounts of apoA-I, apoA-IV and apoCIII float in the HDL region. Small amounts of apoE and apoCIII are also found in the VLDL and IDL regions, and apoE in the LDL region. Ultracentrifugation of nascent lipoproteins in the presence of rat serum promoted flotation of apoA-I and apoA-IV in the HDL fraction and resulted in increased flotation and distribution of apoE and apoCs in VLDL, IDL and LDL regions. These observations are consistent with the hypothesis that intracellular assembly of lipoproteins involves apoB-48 and apoB-100 forms, whereas a large portion of apoA-I, apoCIII and apoA-IV can be secreted in a lipid-poor form, which associates extracellularly with preexisting lipoproteins.  相似文献   

18.
Apoproteins of chylomicrons, very low density lipoprotein (VLDL), and a low density + high density fraction secreted by proximal and distal rat small intestine into mesenteric lymph were examined during triglyceride (TG) absorption. Apoprotein output and composition were determined and the turnover rates of labeled non-apoB (soluble) apoproteins in lipoprotein fractions were measured after an intraluminal [(3)H]leucine pulse during stable TG transport into lymph. The output of VLDL apoproteins exceeded that of chylomicrons during the absorption of 45 micro mol of TG per hour. More [(3)H]leucine was incorporated into VLDL than into chylomicrons and the decay of newly synthesized VLDL apoproteins was more rapid than that of chylomicrons, in part due to higher concentrations of apoA-I and apoA-IV with a rapid turnover rate. Chylomicrons from proximal intestine contained more apoA-I and less C peptides than chylomicrons from distal intestine. Ninety percent of [(3)H]leucine incorporated into soluble apoproteins was in apoA-I and apoA-IV, but little apoARP was labeled. The turnover rate of apoA-I and apoA-IV differed significantly in the lymph lipoproteins examined. Although total C peptide labeling was small, evidence for intestinal apoC-II formation and differing patterns of apoC-III subunit labeling was obtained. [(3)H]Leucine incorporation and apoprotein turnover rates in lipoprotein secreted by proximal and distal intestine were similar. The different turnover rates of apoA-I and apoA-IV in individual lipoproteins suggest that these A apoproteins are synthesized independently in the intestine.-Holt, P. R., A-L. Wu, and S. Bennett Clark. Apoprotein composition and turnover in rat intestinal lymph during steady-state triglyceride absorption.  相似文献   

19.
PURPOSE OF THE REVIEW: This review clarifies the functions of key proteins of the chylomicron and the HDL pathways. RECENT FINDINGS: Adenovirus-mediated gene transfer of several apolipoprotein (apo)E forms in mice showed that the amino-terminal 1-185 domain of apoE can direct receptor-mediated lipoprotein clearance in vivo. Clearance is mediated mainly by the LDL receptor. The carboxyl-terminal 261-299 domain of apoE induces hypertriglyceridemia, because of increased VLDL secretion, diminished lipolysis and inefficient VLDL clearance. Truncated apoE forms, including apoE2-202, have a dominant effect in remnant clearance and may have future therapeutic applications for the correction of remnant removal disorders. Permanent expression of apoE and apoA-I following adenoviral gene transfer protected mice from atherosclerosis. Functional assays, protein cross-linking, and adenovirus-mediated gene transfer of apoA-I mutants in apoA-I deficient mice showed that residues 220-231, as well as the central helices of apoA-I, participate in ATP-binding cassette transporter A1-mediated lipid efflux and HDL biogenesis. Following apoA-I gene transfer, an amino-terminal deletion mutant formed spherical alpha-HDL, a double amino- and carboxyl-terminal deletion mutant formed discoidal HDL, and a carboxyl-terminal deletion mutant formed only pre-beta-HDL. The findings support a model of cholesterol efflux that requires direct physical interactions between apoA-I and ATP-binding cassette transporter A1, and can explain Tangier disease and other HDL deficiencies. SUMMARY: New insights are provided into the role of apoE in cholesterol and triglyceride homeostasis, and of apoA-I in the biogenesis of HDL. Clearance of the lipoprotein remnants and increase in HDL synthesis are obvious targets for therapeutic interventions.  相似文献   

20.
Animals of various species are widely used as models with which to study atherosclerosis and the lipoprotein metabolism. The objective of this study was to investigate the lipoprotein profiles in Wistar rats and New Zealand white rabbits with experimentally induced hyperlipidemia by means of ultracentrifugation. The Schlieren curves were utilized to compare suckling and adult rat sera to determine whether aging causes alterations in lipoprotein profiles. A striking feature of the data is the high concentration of low-density lipoproteins (LDL), (>5.2 mmol/l cholesterol) in the 2-week old rat serum pool which was greatly decreased in the 3-weeks rat serum pool (<1.3 mmol/l cholesterol). Additional experiments were performed to permit a direct comparison of the amounts of lipoprotein present in rat sera in experimental hyperlipidemia post-Triton WR 1339 administration. Rapid changes in concentrations in very low-density lipoproteins (VLDL), LDL and high-density lipoproteins (HDL) were observed after Triton injection. The administration of Triton WR 1339 to fasted rats resulted in an elevation of serum cholesterol levels. Triton physically alters VLDL, rendering them refractive to the action of lipolytic enzymes in the blood and tissues, preventing or delaying their removal from the blood. Whereas the VLDL concentration was increased markedly, those of LDL and HDL were decreased at 20 h after Triton treatment. Rabbits were fed a diet containing 2% cholesterol for 60 days to develop hyperlipidemia and atheromatous aortic plaques. A combination of preparative and analytical ultracentrifugation was used to investigate of LDL aliquots, to prepare radioactive-labeled lipoproteins and to study induced hyperlipidemia in rabbits. Analytical ultracentrifugation was applied to investigate the LDL flotation peaks before and after cholesterol feeding of rabbits. Modified forms of LDL were detected in the plasma of rabbits with experimentally induced atherosclerosis. ApoB-containing particles, migrating as LDL, intermediate density lipoproteins and VLDL were the most abundant lipoproteins. Gamma camera in vivo scintigraphy on rabbits with radiolabeled lipoproteins revealed visible signals corresponding to atherosclerotic plaques of the aorta and carotid arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号