首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscapes are often spatially heterogeneous, and many species frequently confront novel environments to which they are not adapted. Whether a species becomes adapted to a novel environment, and thus undergoes niche evolution, may depend not only on the genetic architecture of the traits under selection, but also on the structure of the ecological landscape. Different models of gene architecture are used to show that complex genetic architectures tends to produce genetic canalization that slows adaptation to novel environments compared to simpler additive polygenic architectures, but that the topology of the landscape interacts with genetic architecture to influence the probability of adaptation. This interaction can lead to unexpected results, such as a greater probability of adaptation to a novel environment for a population of more highly canalized individuals than a population of less canalized individuals. The interplay between landscape structure and genetic architecture may influence the balance of evolutionary forces acting on a population, and thus whether a species is likely to adapt to the novel environments it confronts.  相似文献   

2.
3.
4.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

5.
Radionuclide lymphoscintigraphy is a useful technique for differentiating lymphedema from other causes of swelling, and may sometimes be useful for delineating collateral lymphatics, the level of obstruction, and the presence of lymphoceles or abnormal collections of lymphatic vessels, if they communicate sufficiently with normal lymphatic vessels. Standardization of technique is important to provide better intrapatient and even interpatient comparison. Symmetry, numbers, and locations of lymphatic vessels, lymph nodes, abnormal collections, and dermal collaterals are helpful in the qualitative assessment of lymphoscintigraphy. In addition, region-of-interest analysis may be used to quantitate the clearance of the radiopharmaceutical from the injection site and its accumulation in draining lymph nodes. The constellation of findings may be used to assess the severity of the lymphatic obstruction, the involvement of clinically normal limbs, and to plan therapy.  相似文献   

6.
Anthropogenic fragmentation of habitat and populations is recognized as one of the most important factors influencing loss of biodiversity. Since it is difficult to quantify demographic parameters in small populations, we need alternative methods to elucidate important factors affecting the viability of local populations. The Fennoscandian arctic fox inhabits a naturally fragmented alpine tundra environment, but historic anthropogenic impacts have further fragmented its distribution. After almost 80 yr of protection, the population remains critically endangered. Both intrinsic factors (related to the isolation and size of sub‐populations) and extrinsic factors (related to environmental conditions influencing patch quality and interspecific competition) have been proposed as explanations for the lack of population growth. To distinguish between these hypotheses, we conducted a spatially explicit analysis that compares areas where the species has persisted with areas where it has become locally extinct. We used characteristics of the fragments of alpine tundra habitat and individual arctic fox breeding dens (including both currently active dens and historically active dens) within the fragments to evaluate the importance of habitat characteristics and connectivity in explaining variation in persistence within a fragment. The number of reproductive events in a fragment was related to the size of the fragment, but not more than expected following a 1:1 relationship, suggesting little effect of fragment size on the relative number of reproductions. The likelihood of a den being used for breeding was positively associated with factors minimising interspecific competition as well as increasing within‐fragment connectivity. These results support the idea that the failure of Fennoscandian arctic fox to recover is caused by demographic factors that can be related to fine‐scale Allee or Allee‐like effects, as well as environmental influences related to increased competition and exclusion by red foxes.  相似文献   

7.
Spatially structured habitats challenge populations to have positive growth rates and species often rely on dispersing propagules to occupy habitats outside their fundamental niche. Most marine species show two main life stages, a dispersing stage and a sedentary stage affecting distribution and abundance patterns. An experimental study on Corophium acherusicum, a colonial tube-building amphipod, showed the strong influence that a source population can have on new habitats. More importantly, this study shows the effect of temporal sinks where newly established populations can show reduced growth rates if the propagule supply from a source is removed. Sink populations had a reduction in abundance and became male-biased as females left colonies. The consequences arising from short-term dispersal and temporal sinks could be due to different selection pressures at the source and sink populations. These consequences can become reflected in long-term dynamics of marine populations if we shift focus to non-random dispersal models incorporating behaviour and stage-dependent dispersal.  相似文献   

8.
9.
Dispersal behavior directly influences the level of inbreeding, but the effect of inbreeding avoidance on dispersal is less well studied. The parasitoid wasp Nasonia vitripennis (Walker) (Hymenoptera: Chalcidoidea: Pteromalidae) is known to mate exclusively on the natal patch, and females are the only dispersing sex. A previous study has shown that foundresses on a patch are typically unrelated, implying that females disperse for a considerable distance from their natal patch after mating. We investigated dispersal of N. vitripennis on two scales. On a local scale we used a mark-release-recapture experiment, and on the larger scale we investigated isolation by distance using a population genetic approach. We found that N. vitripennis females are long-distance dispersers, capable of covering at least 2 km in 48 h. Populations within a range of 100 km showed no substructure, but larger distances or major geographical barriers restricted gene flow and led to significant population structure. The results provide a basis for future research on dispersal of parasitoids and are discussed in the context of dispersal abilities and inbreeding avoidance in Nasonia .  相似文献   

10.
Theoretical work has shown that spatial landscape context can contribute to reducing local adaptation in populations depending on the spatial pattern of environmental heterogeneity, the spatial scale of distances between habitats on landscapes, and the level of habitat connectivity. However, only a handful of empirical studies have addressed the impact of regional landscape context on local trait divergence in natural populations. We tested if local adaptation in abiotic tolerance is diminished in landscapes with strong spatial heterogeneity and habitat proximity. We used a freshwater copepod (Leptodiaptomus minutus) that is known to show local adaptive divergence in acid tolerance as a study system to understand the effects of regional landscape-level spatial heterogeneity in lake/pond pH on local trait divergence. We compared local divergence in copepod acid tolerance from three types of landscapes: (i) a homogeneous pH landscape of exclusively circumneutral lakes (pH ≥ 6.0); (ii) a heterogeneous pH landscape with a mixture of acidic and circumneutral lakes; and (iii) a heterogeneous pH landscape in which relatively infrequent circumneutral ponds are embedded in a predominantly acidic landscape. We found that local adaptation to circumneutral lake/pond pH was most reduced in the pH-heterogeneous landscape dominated by acidic habitats, likely because of gene flow from surrounding nearby acidic ponds. Our study empirically confirms theoretical predictions that spatial landscape context is important for explaining regional differences in population environmental tolerances. These effects may become important for understanding regional differences in population fitness trade-offs when presented in combination with multiple stressors.  相似文献   

11.
12.
Herbivory is generally assumed to negatively influence mycorrhizal fungi because of reduced photosynthate to support mycorrhizae following defoliation. We examined effects of 60% and 100% defoliation (excluding current year needles) on tree growth and ectomycorrhizal associations of 10–15 year old Scots pines ( Pinus sylvestris ). Over 98% of short roots were colonized by mycorrhizal fungi, and contrary to expectation, defoliation did not decrease the proportion of living fungi in fine roots. Furthermore, defoliation did not alter the ratios of produced needle biomass to the biomass of fine roots or living fungi in fine roots. The composition of mycorrhizal morphotypes was changed, however, which suggests competition among different mycorrhizal growth forms owing to their carbon demands. We propose that these outcomes are a consequence of a functional balance between carbon sources in plant foliage and below-ground sinks, i.e. growing roots and mycorrhizal associates.  相似文献   

13.
Farmland biodiversity and its associated ecosystem services are affected by agricultural activities at multiple spatial scales. Among these services, the regulation of weeds by invertebrate seed predators has received much attention recently but little is known about the relative effect of local management and landscape context of fields on this process. We monitored seed predation on four common weed species and carabid communities in 28 winter-cereals fields during five consecutive weeks in spring 2010. These fields were situated in contrasted landscape contexts and varied in terms of intensity of pesticide treatments and soil tillage regimes. Weed seed predation was strongly and positively related to the Shannon diversity of (strictly) granivorous carabids and to the activity–density of omnivorous carabids but negatively to the richness of omnivorous carabids. Weed seed predation and granivore diversity were positively related to landscape diversity and the proportion cover of temporary grassland within a 1000 m radius around focal fields and were negatively affected by the intensity of local pesticide treatments. No-till systems sheltered higher diversity of granivorous carabids but did not show higher seed predation rates. We showed that landscape composition factors had a higher relative influence than local practices factors on weed seed predation service. Consequently, weed management strategies should not only consider the management of single fields but also the surrounding landscape to preserve carabid biodiversity and enhance weed seed predation service.  相似文献   

14.
15.
There is an emerging interest in analyzing the effects of seed predation and its consequences for plant recruitment across the landscape. The main goals of this study were to assess (1) whether seed predation varies among spatial levels of the landscape, (2) whether there are differences between pre- and post-dispersal seed predation and, (3) whether these differences are due to different animal species with different perception of the landscape and thus different activity ranges. The study system was a mosaic landscape composed of patches of different vegetation types (oak and pine woodlands and shrublands) and microhabitats intermingled. Pre-dispersal acorn predation varied between patches, trees, and predator species. Wild boar rooting activity was widely distributed through the landscape and mainly focused on pine woodlands while rodents′ feeding activity was mainly centered on local scales within oak woodland patches. The patch spatial level consistently appears to be the key explanatory variable for pre- and post-dispersal acorn predation. Furthermore, the post-dispersal percentage of seed predation and emergence also differed among spatial levels. Within the same vegetation type, different microhabitats did not show significant differences in rates of survival to acorn predation and then on germination or emergence. These results suggest that seed predators influence the spatial patterns of Quercus ilex populations by reshaping the seed shadow within the landscape, mainly by differences among patches. So, the landscape appears to behave as a mixed mosaic with valuable patches for plant recruitment (with low seed predation) intermingled with bad quality patches where the dispersed seeds more often disappear and thus, the recruitment fails.  相似文献   

16.
The landscape context of cereal aphid-parasitoid interactions   总被引:10,自引:0,他引:10  
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid-parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32-100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5-6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5-2 km, whereas aphid densities responded to percentage of arable land at scales of 1-6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the 'functional spatial scale' for species-specific landscape management.  相似文献   

17.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

18.
Hyper-herbivory following predator removal is a global issue. Across North America and Europe, increasing deer numbers are affecting biodiversity and human epidemiology, but effectiveness of deer management in heterogeneous landscapes remains poorly understood. In forest habitats in Europe, deer numbers are rarely assessed and management is mainly based on impacts. Even where managed areas achieve stable or improving impact levels, the extent to which they act as sinks or persist as sources exporting deer to the wider landscape remains unknown. We present a framework to quantify effectiveness of deer management at the landscape scale. Applied across 234 km2 of Eastern England, we assessed management of invasive Reeve's muntjac (Muntiacus reevesi) and native roe (Capreolus capreolus), measuring deer density (using thermal imaging distance transects 780 km/year), fertility, neonatal survival, and culling to quantify source-sink dynamics over 2008–2010. Despite management that removed 23–40% of the annual population, 1,287 (95% CI: 289–2,680) muntjac and 585 (454–1,533) roe deer dispersed annually into the wider landscape, consistent with their ongoing range expansion. For roe deer, culled individuals comprised fewer young deer than predicted by a Leslie matrix model assuming a closed population, consistent with age-dependent emigration. In this landscape, for roe and muntjac, an annual cull of at least 60% and 53%, respectively, is required to offset annual production. Failure to quantify deer numbers and productivity has allowed high density populations to persist as regional sources contributing to range expansion, despite deliberative management programs, and without recognition by managers who considered numbers and impacts to be stable. Reversing an unfavorable condition of woodland biodiversity requires appropriate culls across large contiguous areas, supported by knowledge of deer numbers and fertility. © 2013 The Wildlife Society.  相似文献   

19.
庐山风景区碳源、碳汇的测度及均衡   总被引:6,自引:0,他引:6  
周年兴  黄震方  梁艳艳 《生态学报》2013,33(13):4134-4145
旅游目的地系统碳源、碳汇的计算与分析,不仅是旅游业节能减排政策制定的重要依据,也是旅游与环境相互关系研究的一个新的科学命题.以庐山风景区为例,计算并分析了2010年的碳源及碳汇.结果表明:(1)2010年庐山风景区包括本地居民和旅游者的总碳排放为108 697 t.其中,本地居民占碳排放总量的19.52%,旅游者占碳排放总量的80.48%.在旅游者碳排放中,旅游交通碳排放占50.24%,旅游住宿碳排放占38.04%,旅游食物消费碳排放占10.65%,旅游活动碳排放仅占1.07%;(2)2010年庐山风景区内陆地生态系统碳吸收为9447 t;(3)从碳源、碳汇均衡角度看,庐山陆地生态系统的固碳量吸收了区内碳排放的23.47%.但由于旅游者的区际流动和旅游业的产业关联性强,陆地生态系统的碳吸收仅占区内和区外碳排放总量的8.69%,旅游业使庐山成为一个显著的碳源.  相似文献   

20.
Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co‐pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co‐pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co‐pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号