首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
10 to 20% of [1-14C] palmitate injected into pregnant guinea pigs was recovered in lipids of their fetuses. From these data and the rate of transport of palmitate in maternal blood, it appears that placental transport of free fatty acids can account for the accumulation of lipids in late gestational fetuses. About 80% of the labeled palmitate in the fetus appeared initially in lipids of the liver. 14C appeared in plasma triglyceride fatty acids after a few minutes and subsequently accumulated in lipids of white and brown adipose tissue, suggesting that much of the palmitate deposited in adipose tissue were derived from hepatogenous triglyceride fatty acids. By contrast, 14C was usually maximal in heart and carcass lipids before it appeared in plasma triglyceride fatty acids. Lipoprotein lipase activity in fetal adipose tissue was low, and activity of cofactor protein of lipoprotein lipase in fetal blood plasma was much lower than that observed in other mammalian species. On the basis of these and earlier observations, it is concluded that the accumulation of triglycerides in liver and blood plasma of fetal guinea pigs during late gestation is at least partly the result of the large uptake of maternally derived free fatty acids by the fetal liver accompanied by rapid synthesis and secretion of triglyceride-rich very low density lipoproteins into the blood. However, limited uptake of triglyceride fatty acids in adipose tissue may contribute to the fatty liver and hyperlipemia.  相似文献   

2.
Rats fed a non-absorbable bile acid binding resin (cholestyramine) throughout gestation had decreased activities of adipose tissue lipoprotein lipase (LPL), hepatic triacylglycerol lipase and a heparin-releasable placental lipase distinct from LPL, when assayed at near-term gestation. The fetal plasma and liver triacylglycerol concentrations were not altered. The fetal liver total lipid and plasma triacylglycerol, however, had reduced levels of n-6 and n-3 series fatty acids, suggesting decreased availability of maternal dietary-derived essential fatty acids. These studies suggest that cholestyramine feeding may alter triacylglycerol flux and the quantity or type of maternal fatty acids available for placental transfer. The resin has application for in vivo study of the effects of maternal lipid transfer on the regulation of fetal hepatic lipid synthesis.  相似文献   

3.
Both the developing fetus and the placenta require fatty acids for the synthesis of complex lipids necessary for the biogenesis of plasma membranes, intracellular membranes, and organelles; triacylglycerol stores; and secreted products such as lipoproteins, bile, and pulmonary surfactant. Although fetal tissues can readily synthesize fatty acids, considerable evidence exists in nonruminants that as much as 50% of the fatty acid requirements of the fetus are maternally derived. The placenta may be even more dependent than the fetus on the maternal contribution because the placenta synthesizes fatty acids poorly. The major sources of fatty acid provided to the fetus and placenta have not been identified with certainty. Maternal free fatty acids readily cross the placenta and the fatty acid moieties of maternal serum lipoproteins may also be transferred. The mechanism of transport of maternal free fatty acids and lipoprotein-carried lipid has not been investigated on a molecular level. Future studies with cultured trophoblasts should be useful in providing answers to many questions concerning placental lipid metabolism and the role of the placenta in transporting lipid to the fetus.  相似文献   

4.
Pregnancy is associated with a hypercholesterolemic and a hyperlipidemic state. The totality of the essential fatty acids and 50% of the lipids needed by the fetus are transferred by the placenta from the maternal circulation. The hypothesis of this study is that an augmentation of the maternal plasmatic cholesterol is modifying the fetal lipids accumulation and development during rabbit pregnancy. To demonstrate the impact of a cholesterol enriched diet on plasma lipids during rabbit's pregnancy and on their fetus, we have established two groups: control and hypercholesterolemic rabbits (fed with a 0.2% cholesterol diet). Blood samples were collected before mating and at each trimester of pregnancy for analysis of lipid fractions and their lipoproteins. Plasma analysis shows that starting the 10th day of pregnancy the concentration of total-cholesterol and lipoproteins decreases for both groups. We have demonstrated that for the hypercholesterolemic group, concentrations of total-cholesterol (631%) and lipoproteins are significantly higher at the end of pregnancy than those for the control group. For both groups, after 20 days of pregnancy, triglycerides metabolism was biphasic showing a significant increase followed by a diminution in their concentration. In both groups, free fatty acids increases significantly at the end of the pregnancy (537.5% for the control group and 462.5% for the hypercholesterolemic group). Furthermore, the offsprings of hypercholesterolemic dams manifest a lower birth weight (15.5%) than those of control group. Our results demonstrate that a cholesterol enriched diet modifies greatly the fetal development and lipid metabolism during rabbit's pregnancy. These modifications could be useful for the understanding of the interaction between diet and fetal development in rabbit and probably during human pregnancy.  相似文献   

5.
6.
The transfer of plasma triglyceride fatty acids from mother to fetus was studied in rats. Following i.v. injection of labelled chylomicron and very low density lipoprotein (VLDL) triglycerides into the mother, the time courses of the plasma triglycerides, free fatty acids, and fetal radioactivity were determined. The data were analysed using a mathematical model. From the results the following conclusions were drawn: To cover the need of fetal fatty acids, the placenta utilizes only VLDL triglycerides but not chylomicron triglycerides. Comparison of the amount of VLDL triglyceride fatty acids (0.04 micromoles/min/litter) and of maternal plasma free fatty acids (0.08 micronmoles/min/litter) transferred into the fetus indicates that the maternal plasma triglycerides are a source of fetal fatty acids, that cannot be neglected.  相似文献   

7.
8.
Omega (n)-3 polyunsaturated fatty acids (PUFA) are known to regulate lipid metabolism and inflammation; however, the regulation of maternal lipid metabolism and cytokines profile by n-3 PUFA during different gestation stages, and its impact on fetal sustainability is not known. We investigated the effects of maternal diet varying in n-3 PUFA prior to, and during gestation, on maternal metabolic profile, placental inflammatory cytokines, and fetal outcomes. Female C57BL/6 mice were fed either a high, low or very low (9, 3 or 1% w/w n-3 PUFA) diet, containing n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively for two weeks before mating, and throughout pregnancy. Animals were sacrificed prior to mating (NP), and during pregnancy at gestation days 6.5, 12.5 and 18.5. Maternal metabolic profile, placental cytokines and fetal outcomes were determined. Our results show for the first time that a maternal diet high in n-3 PUFA prevented dyslipidemia in NP mice, and maintained the expected lipid profile during pregnancy. However, females fed the very low n-3 PUFA diet became hyperlipidemic prior to pregnancy, and carried this profile into pregnancy. Maternal diet high in n-3 PUFA maintained maternal plasma progesterone and placental pro-inflammatory cytokines profile, and sustained fetal numbers throughout pregnancy, while females fed the low and very-low n-3 PUFA diet had fewer fetuses. Our findings demonstrate the importance of maternal diet before, and during pregnancy, to maintain maternal metabolic profile and fetus sustainability. These findings are important when designing dietary strategies to optimize maternal metabolism during pregnancy for successful pregnancy outcome.  相似文献   

9.
The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.  相似文献   

10.
The effect of bile duct ligation during pregnancy in rats (thereby increasing maternal plasma bile acids levels) on the bile acid content and composition in the fetus was examined. In spite of 30-fold increase in maternal plasma cholic acid, the bile acid content in the fetus of bile duct ligated rats was significantly lower (P <0.05) with a significant reduction in cholic acid content. Plasma cholesterol levels of fetuses from bile duct ligated rats were also significantly lower (p <0.05). In addition to the commonly expected bile acids, gas-liquid Chromatographic analysis of the fetal bile acid pool showed peaks corresponding to several secondary bile acids. These results suggest that the transfer of primary bile acids of maternal origin into the fetus is minimal.  相似文献   

11.
The amount of maternal plasma free fatty acids passing to the fetus has been determined to be 0.09 mumoles fatty acids per min per each litter. Taking account of the increase of the total fetal fatty acid pool due to the fetal growth (0.2 mumoles fatty acids per min for each litter) we conclude that the maternal circulation is the source of about half of fetal fatty acids on day 21 of pregnancy.  相似文献   

12.
Prenatal exposure to allergens or antigens released by infections during pregnancy can stimulate an immune response or induce immunoregulatory networks in the fetus affecting susceptibility to infection and disease later in life. How antigen crosses from the maternal to fetal environment is poorly understood. One hypothesis is that transplacental antigen transfer occurs as immune complexes, via receptor-mediated transport across the syncytiotrophoblastic membrane and endothelium of vessels in fetal villi. This hypothesis has never been directly tested. Here we studied Plasmodium falciparum merozoite surface protein 1 (MSP1) that is released upon erythrocyte invasion. We found MSP1 in cord blood from a third of newborns of malaria-infected women and in >90% following treatment with acid dissociation demonstrating MSP1 immune complexes. Using an ex vivo human placental model that dually perfuses a placental cotyledon with independent maternal and fetal circuits, immune-complexed MSP1 transferred from maternal to fetal circulation. MSP1 alone or with non-immune plasma did not transfer; pre-incubation with human plasma containing anti-MSP1 was required. MSP1 bound to IgG was detected in the fetal perfusate. Laser scanning confocal microscopy demonstrated MSP1 in the fetal villous stroma, predominantly in fetal endothelial cells. MSP1 co-localized with IgG in endothelial cells, but not with placental macrophages. Thus we show, for the first time, antibody-dependent transplacental transfer of an antigen in the form of immune complexes. These studies imply frequent exposure of the fetus to certain antigens with implications for management of maternal infections during pregnancy and novel approaches to deliver vaccines or drugs to the fetus.  相似文献   

13.
Knowledge of the consequences of maternal obesity in human placental fatty acids (FA) transport and metabolism is limited. Animal studies suggest that placental uptake of maternal FA is altered by maternal overnutrition. We hypothesized that high maternal body mass index (BMI) affects human placental FA transport by modifying expression of key transporters. Full-term placentas were obtained by vaginal delivery from normal weight (BMI, 18.5-24.9 kg/m(2)) and obese (BMI > 30 kg/m(2)) women. Blood samples were collected from the mother at each trimester and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Lipoprotein lipase (LPL) activity was evaluated using enzyme fluorescence. In vitro linoleic acid transport was studied with isolated trophoblasts. Our results demonstrated that maternal obesity is associated with increased placental weight, decreased gestational age, decreased maternal high-density lipoprotein (HDL) levels during the first and third trimesters, increased maternal triglyceride levels during the second and third trimesters, and increased maternal T3 levels during all trimesters, and decreased maternal cholesterol (CHOL) and low-density lipoprotein (LDL) levels during the third trimester; and increased newborn CHOL, LDL, apolipoprotein B100, and T3 levels. Increases in placental CD36 mRNA and protein expression levels, decreased SLC27A4 and FABP1 mRNA and protein and FABP3 protein expression, and increased LPL activity and decreased villus cytotrophoblast linoleic acid transport were also observed. No changes were seen in expression of PPARA, PPARD, or PPARG mRNA and protein. Overall this study demonstrated that maternal obesity impacts placental FA uptake without affecting fetal growth. These changes, however, could modify the fetus metabolism and its predisposition to develop diseases later in life.  相似文献   

14.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

15.
Appropriate partitioning of nutrients between the mother and conceptus is a major determinant of pregnancy success, with placental transfer playing a key role. Insulin-like growth factors (IGFs) increase in the maternal circulation during early pregnancy and are predictive of fetal and placental growth. We have previously shown in the guinea pig that increasing maternal IGF abundance in early to midpregnancy enhances fetal growth and viability near term. We now show that this treatment promotes placental transport to the fetus, fetal substrate utilization, and nutrient partitioning near term. Pregnant guinea pigs were infused with IGF-I, IGF-II (both 1 mg.kg-1.day-1) or vehicle subcutaneously from days 20-38 of pregnancy (term=69 days). Tissue uptake and placental transfer of the nonmetabolizable radio analogs [3H]methyl-D-glucose (MG) and [14C]aminoisobutyric acid (AIB) in vivo was measured on day 62. Early pregnancy exposure to elevated maternal IGF-I increased placental MG uptake by>70% (P=0.004), whereas each IGF increased fetal plasma MG concentrations by 40-50% (P<0.012). Both IGFs increased fetal tissue MG uptake (P<0.048), whereas IGF-I also increased AIB uptake by visceral organs (P=0.046). In the mother, earlier exposure to either IGF increased AIB uptake by visceral organs (P<0.014), whereas IGF-I also enhanced uptake of AIB by muscle (P=0.044) and MG uptake by visceral organs (P=0.016) and muscle (P=0.046). In conclusion, exogenous maternal IGFs in early pregnancy sustainedly increase maternal substrate utilization, placental transport of MG to the fetus, and fetal utilization of substrates near term. This was consistent with the previously observed increase in fetal growth and survival following IGF treatment.  相似文献   

16.
A comparison was made between the effects of chylomicrons and chylomicron remnants on metabolic processes of isolated hepatocytes. Since isolated triacylglycerol-rich lipoproteins are contaminated with nonesterified fatty acids, control incubations were conducted with an amount of fatty acid equivalent to the contaminating fatty acids present in the chylomicrons and the remnant preparations, respectively. Chylomicron remnants, produced in vitro by incubation of chylomicrons in postheparin rat plasma, caused marked inhibition of glycolysis, fatty acid synthesis, and cholesterol synthesis, along with marked stimulation of ketogenesis. These effects were traced to the release of nonesterified fatty acids from these remnant particles as a consequence of contamination with lipoprotein lipase, picked up by the particles during the incubation with rat plasma. Fatty acids inhibit glycolysis, cholesterol, and fatty acid synthesis, but enhance ketone body formation by isolated hepatocytes. Chylomicrons and remnants prepared in vivo by the injection of chylomicrons into functionally hepatectomized rats were not contaminated with lipoprotein lipase and did not inhibit glycolysis and cholesterol synthesis nor increase ketone body formation. These lipoprotein particles did, however, cause significant inhibition of fatty acid synthesis, with the chylomicrons being more effective on a protein basis than the remnants produced in vivo. The mechanism responsible for the inhibition of fatty acid synthesis by chylomicrons and remnants prepared in vivo remains to be resolved.  相似文献   

17.
Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, including pregnancy complications, fetal growth issues, stillbirth, and developmental programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM are associated with inflexibility in trophoblast, limiting the ability to switch between usage of glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and pitfalls of mitochondria-targeted antioxidants.  相似文献   

18.
19.
The liver of the foetal guinea pig accumulates a large quantity of triacyglycerol late in gestation at the same time that adipose-tissue mass grows at its maximum rate and foetal adipose-tissue lipoprotein lipase activity and sensitivity to lipolytic hormones has substantially declined. The fatty acid for triacyglycerol synthesis is not synthesized in the foetal liver and it is unlikely that it originates from any of the foetal tissues. Before the accumulation of hepatic triacyglycerol the concentration of free fatty acids increases in both the umbilical vein and the maternal inferior vena cava. This occurs at a time when the triacyglycerol lipase activity in maternal adipose tissue is elevated and the rate of lipolysis, but not of fatty acid esterification, is higher than earlier in gestation or than in the non-pregnant state. It is proposed that the increase in lipolysis in maternal adipose tissue, brought about by an increase in circulating lipolytic hormones, mobilizes fatty acid, which passes to the foetus and is partly stored as hepatic triacylglycerol. The foetal liver effectively removes both long-and short-chain fatty acids from umbilical-vein blood. The rate of placental fatty acid transfer is more than adequate to account for the triacylglycerol accumulation.  相似文献   

20.
Cholesterol is necessary for the proper growth and development of the fetus. Consequently, disruptions in cholesterol biosynthesis lead to abnormal fetal development. It has been shown that in cells exposed to polyunsaturated fatty acids (PUFA), the expressions of genes and activities of enzymes involved in cholesterol synthesis are reduced. Similarly, we found that adult male hamsters fed PUFA-enriched diets had an approximately 60% reduction in in vivo hepatic sterol synthesis rates. If fetal tissues respond to PUFA in the same manner as do adult livers, then maternal dietary PUFA could lead to a reduction in fetal sterol synthesis rates and possibly abnormal development. To investigate the impact of maternal dietary fatty acids on fetal sterol synthesis rates, female hamsters were fed diets enriched in various fatty acids before and throughout gestation. In vivo sterol synthesis rates were measured in fetuses at mid- and late gestation. At both gestational stages, dietary PUFA had no effect on fetal sterol synthesis rates. This lack of effect was not a consequence of a lack of PUFA enrichment in fetal fatty acids or the lack of PUFA receptor expression in the fetus. We hypothesize that the fetus may experience a dysregulation of sterol synthesis as the result of the fetus being in a negative sterol balance; the PUFA-induced suppression of sterol synthesis in the adult male hamster liver was ablated by creating a net negative sterol balance across the adult hepatocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号