共查询到20条相似文献,搜索用时 15 毫秒
1.
Tycko B 《Cytogenetic and genome research》2006,113(1-4):271-278
Genomic imprinting has a special role in placental biology. Imprinted genes are often strongly expressed in the placenta, and the allelic expression bias due to imprinting is sometimes stronger in this extraembryonic organ than in the embryo and adult. Mutations, epimutations, and uniparental disomies affecting imprinted loci cause placental stunting or overgrowth in mice and humans, and placental neoplasms (complete hydatidiform moles) are androgenetic. Whether imprinted genes might also play a role in the more common medical conditions that affect the placenta, including preeclampsia and intrauterine growth restriction (IUGR), is an important question that is now receiving some attention. Here we review this area and describe recent data indicating altered expression of imprinted genes in the placental response to maternal vascular underperfusion associated with IUGR. 相似文献
2.
Abu-Amero S Monk D Apostolidou S Stanier P Moore G 《Cytogenetic and genome research》2006,113(1-4):262-270
Growth is defined as the progressive increase in size and is listed as one of the eight main characteristics of life. In human gestation the most rapid growth phase is from 16 to 32 weeks when first there is both cell number and size increase and then from 32 weeks onwards there is continued size increase (Pollack and Divon, 1992). The mechanism of growth in utero is of fundamental interest to clinicians and scientists because of its implications for neonatal health. Growth is multifactorial in origin with both genetics and environment contributing equally large parts. Despite this complexity analysis of the candidate genes involved is possible using simple tissue biopsies at the relevant stages of development. Of particular interest in understanding fetal growth is the analysis of a group of genes that show a parent-of-origin effect known as genomic imprinting. Imprinted genes are not only found in eutherian (placental) and metatherian (marsupial) mammals but surprisingly also in plants. Nevertheless, their evolution in mammals appears to be linked primarily to placentation. It is thought to result from a potential conflict between the parents in terms of the drive to successfully propagate their own separate genes and the mother's added drive for her survival through the pregnancy to reproduce again. This means that the mother wants to restrict fetal growth and the father to enhance it. 相似文献
3.
Fowden AL Coan PM Angiolini E Burton GJ Constancia M 《Progress in biophysics and molecular biology》2011,106(1):281-288
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease. 相似文献
4.
5.
P C Owens J A Owens M Lovelock E C Chan J Falconer J S Robinson R Smith 《Journal of developmental physiology》1989,11(2):63-71
The opioid polypeptide beta-endorphin is present in fetal blood but it is not clear whether its source is the fetus or the placenta. We therefore measured beta-endorphin in extracts of fetal femoral arterial and umbilical venous blood plasma in sheep by radioimmunoassay to determine whether the fetus or the placenta is the major source of beta-endorphin in the fetal circulation. Chromatographic analysis of extracts of fetal arterial plasma showed that beta-lipotropin and other precursors of beta-endorphin made only a minor contribution to the immunoreactivity detected. Concentrations of immunoreactive beta-endorphin were higher in the femoral artery than in the umbilical vein in fetal sheep between 113 and 128 days of pregnancy. Therefore the placenta removes beta-endorphin or a closely related polypeptide of fetal origin from the umbilical circulation in sheep at this stage of gestation. Acute hypoxaemia and hypoglycaemia increase the concentrations of immunoassayable beta-endorphin in blood plasma of adult and fetal sheep, but little is known about the effects of chronic hypoxaemia or hypoglycaemia on the circulating levels of beta-endorphin and related polypeptides in the fetus. Therefore we also measured immunoreactive beta-endorphin in blood plasma from fetal sheep in which growth retardation in association with restricted placental growth was produced by removal of endometrial caruncles before mating. Intra-uterine growth retardation was accompanied by chronic hypoglycaemia and chronic hypoxaemia in the fetuses. This was not associated with higher concentrations of beta-endorphin-like immunoreactivity in fetal arterial or umbilical venous plasma, but was accompanied by significantly increased placental extraction of fetal immunoreactive beta-endorphin from the umbilical circulation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
印迹基因的表达受表观机制调控,依据其亲本来源在植物胚乳中表现为单等位基因表达的特殊模式。这些基因在调控胚及其附属结构的发育、控制种子的大小、生殖隔离以及防止无性生殖上发挥着关键作用。随着植物表观遗传学研究的不断深入,目前对于印迹基因的探索已逐渐成为表观遗传学研究的热点。文章介绍了关于印迹基因起源的亲本冲突学说,并以拟南芥的MEA、FIS2、FWA、MPC、PHE1,玉米的FIE1、FIE2等重要印迹基因为例,阐述了有关植物印迹基因的表达调控机制及最新研究进展。 相似文献
7.
Seitz H Royo H Lin SP Youngson N Ferguson-Smith AC Cavaillé J 《Biological chemistry》2004,385(10):905-911
8.
The effect of restriction of placental growth on the supply of glucose to the gravid uterus and fetus and on fetal and utero-placental metabolism of glucose and lactate was examined in this study. Endometrial caruncles were removed from 13 sheep (caruncle sheep) prior to mating, which restricted placental growth in the subsequent pregnancy. Half the fetuses of caruncle sheep were small or growth retarded, with the remainder normal in size. After insertion of vascular catheters at 110 days gestation, the caruncle sheep, together with 16 control sheep, were studied between 121 and 130 days of gestation. Glucose delivery to and consumption by the gravid uterus and its contents, both as a total and per kg of tissue mass, was significantly lower in caruncle ewes with small fetuses, although glucose extraction was similar to that in controls. Utero-placental glucose consumption was significantly lower in caruncle ewes carrying small fetuses compared to that in control ewes, both as a total and per kg of placenta. Small caruncle fetuses were hypoxaemic and hypoglycaemic and the lactate concentration in the common umbilical vein was significantly higher than in control sheep. Glucose delivery to and consumption by the fetus was significantly lower in normal-sized and in small caruncle fetuses compared to controls. Fetal glucose consumption per kg of fetus was similar in control and caruncle sheep. Fetal glucose extraction increased as fetal weight decreased. Utero-placental production of lactate was similar in control and caruncle ewes. However, uterine output of lactate decreased as placental weight fell. Utero-placental production of lactate per kg of placenta was significantly higher in caruncle ewes compared to controls and increased as oxygen content in blood from the fetal femoral artery decreased. Fetal lactate consumption per kg of fetus increased as the concentration of lactate in blood from the common umbilical vein increased. It is concluded that intrauterine growth retardation due to restriction of placental growth is associated with a reduced supply of glucose to both the pregnant uterus and fetus and a redistribution of glucose therein to the fetus, both directly as glucose and indirectly as lactate. This reflects the disproportionate maintenance of fetal weight relative to that of the placenta, reduced utero-placental consumption of glucose per kg of placenta, conversion of a greater proportion of that glucose or other substrate(s) to lactate by the placenta and an increase in the fraction of the lactate produced by utero-placental tissues that is secreted into the fetal circulation. 相似文献
9.
Millar L Streiner N Webster L Yamamoto S Okabe R Kawamata T Shimoda J Büllesbach E Schwabe C Bryant-Greenwood G 《Biology of reproduction》2005,73(4):695-702
Early placental insulin-like protein (INSL4 or EPIL) is a member of the insulin superfamily of hormones, which is highly expressed in the placenta. We have confirmed this at term and shown it to be expressed by the maternal decidua. Although an abundance of locally acting growth factors are produced within the uterus during pregnancy, we hypothesized that INSL4 plays an important role in fetal and placental growth. We have demonstrated with cell lines and primary cells that it has a growth-inhibitory effect by causing apoptosis and loss of cell viability. We used primary amniotic epithelial cells for flow cytometry to show that INSL4 caused apoptosis, which was dose-related and significant (P < 0.05) at 50 ng/ml. This was confirmed by measurement of the nuclear matrix protein in the media. In comparison, relaxin treatment (up to 200 ng/ml) had no effect on apoptosis. The addition of INSL4 (3-30 ng/ml) also caused a loss of cell viability, although it had no effect on the numbers of cells at different phases of the cell cycle. Placental apoptosis is an important process in both normal placental development and in fetal growth restriction. Therefore, an in vivo clinical correlate was sought in fraternal twins exhibiting discordant growth. Expression of the INSL4 gene was doubled in the placenta of the growth-restricted twin compared to the normally grown sibling, suggesting that it may be linked to a higher level of apoptosis and loss of cell viability and, therefore, that it may contribute to fetal growth restriction. 相似文献
10.
Human placental lactogen (hPL) and growth hormone (hGH) are two hormones thought to have evolved from a common ancestral gene (along with prolactin), yet they have quite different functions and specificities. The nucleic acid sequences of the respective cDNAs of the two genes share considerable homology, as well as the existence of multiple forms of each gene within the genome. In this study we report on the linkage arrangement of several genes from this group. Two hPL-like genes as well as an hGH gene are shown to be linked within a 38-kilobase pair region of DNA. Linkage between a variant hGH gene and an hPL gene is also shown. The orientation and structural organization of these genes was previously established using 5'- and 3'-specific probes from a placental lactogen cDNA clone and detailed restriction endonuclease mapping. Restriction fragments from the overlapping clones were verified by comparison to digests of high molecular weight genomic DNA. In addition, the location of a specific class of repetitive DNA sequences, the Alu family, was mapped on these clones using the recombinant clone BLUR 8. All members of this multigene family have Alu repeat sequences either immediately flanking their 3' or 5' untranslated regions or within their intervening sequences. 相似文献
11.
Each somatic cell of the human body contains 46 chromosomes consisting of two sets of 23; one inherited from each parent. These chromosomes can be categorised as 22 pairs of autosomes and two sex chromosomes; females are XX and males are XY. Similarly, at the molecular level, two copies of each autosomal gene exist; one copy derived from each parent. Until the mid-1980s, it was assumed that each copy of an autosome or gene was functionally equivalent, irrespective of which parent it was derived from. However, it is now clear from classical experiments in mice and from examples of human genetic disease that this is not the case. The functional activity of some genes or chromosomal regions is unequal, and dependent on whether they have been inherited maternally or paternally. This phenomenon is termed 'genomic imprinting' and the activity or silence of an imprinted gene or chromosomal region is set during gametogenesis. Genomic imprinting involving the autosomes appears to be restricted to eutherian mammals, and has most likely evolved as a result of the conflicting concerns of the parental genomes in the growth and development of their offspring. When the normal pattern of imprinting is disrupted, the phenotypes observed in humans and mice are generally associated with abnormal fetal growth, development and behaviour, illustrating its importance for a normal intrauterine environment. The characteristics of imprinted genes, their regulation and the phenotypes associated with altered imprinting are discussed. 相似文献
12.
Effects of maternal nutritional status on fetal and placental growth and on fetal urea synthesis in sheep 总被引:4,自引:0,他引:4
Fetal and placental growth, and fetal and maternal urea synthesis in late gestation, were studied in 2-year-old Corriedale ewes on a maintenance ration (M) except when subjected to moderate dietary restriction from day 50 to day 100 (RM), day 100 to day 135 (MR) or day 50 to day 135 (RR). In comparison with fetuses of ewes maintained throughout the experiment (MM), RR fetuses were smaller and RM fetuses were larger whereas MR fetuses were unaffected; all restrictions were associated with increased placental size. Fetal urea synthesis at day 133 in the well-nourished ewes (MM) was 21.5 mg N h-1 kg-1 increasing to, respectively, 25.7, 27.3 and 38.8 mg N h-1 kg-1 in groups MR, RM and RR; these values were 1.6, 3.9, 2.2 and 3.8 times the maternal rates of synthesis. On the basis of the observed urea synthesis rates, amino acid oxidation could have accounted for up to, respectively, 32, 38, 40 and 57% of fetal oxygen consumption in groups MM, MR, RM and RR. Amino acids, in addition to their role in tissue accretion, may be key energy substrates for the fetus. 相似文献
13.
Symonds ME Gopalakrishnan G Bispham J Pearce S Dandrea J Mostyn A Ramsay MM Stephenson T 《Archives of physiology and biochemistry》2003,111(1):45-52
Epidemiological and experimental studies have demonstrated that maternal undernutrition during pregnancy is associated with abnormal placental growth. In sheep, maternal nutrient restriction over the period of rapid placental growth (30-80 days) restricts placentome growth. Then following adequate nutrition up to term (147 days), placental mass is greater in association with a higher total abundance of the predominant placental glucose transporter-1. The resulting lambs are larger at birth, have heavier kidneys with an increased expression of the glucocorticoid-responsive type 1 angiotensin II receptor. Near to term, these fetuses possess more adipose tissue, the endocrine sensitivity of which is markedly enhanced. For example, the abundance of mRNA for 11beta-hydroxysteroid dehydrogenase type 1, which catalyses the conversion of cortisone to bio-active cortisol is increased. This is associated with a higher abundance of both leptin and glucocorticoid receptor mRNA. At 6 months of age, the juvenile offspring of nutrient restricted ewes have lower resting blood pressure that was positively correlated with plasma cortisol concentration, suggesting their blood pressure could be more strongly driven by circulating cortisol. These offspring also exhibited a greater pressor response to vasoconstrictor challenges, but showed no difference in vasodilatory response. At this age, the kidney weight was similar between groups, but the abundance of cytochrome c in kidney mitochondria was enhanced in lambs born to nutrient restricted ewes that could indicate increased mitochondrial activity. Reduced maternal nutrition during the period of rapid placental growth may therefore contribute to hypertension in later life through physiological and vascular adaptations during fetal life. 相似文献
14.
15.
Regulation of DNA synthesis in human fetal hepatocytes by placental lactogen, growth hormone, and insulin-like growth factor I/somatomedin-C 总被引:1,自引:0,他引:1
Hepatocytes were isolated by gentle collagenase digestion of liver fragments from human fetuses of 8-16 weeks gestation obtained following prostaglandin-induced pregnancy terminations. They were maintained on collagen-coated tissue culture dishes in selective arginine-free medium for up to 72 hr, and the action of hormones and growth factors on DNA synthesis was studied by autoradiography following incubation with 3H-thymidine. The labeling index of hepatocytes was consistently enhanced by 25-250 ng/ml human placental lactogen (HPL), 25-250 ng/ml human growth hormone (HGH), 10-50 ng/ml insulin-like growth factor I/somatomedin-C (IGF I/Sm-C), and 10% dialyzed fetal calf serum, reaching a maximum of three- to four-fold greater than in basal medium alone. Under basal conditions, 30% of hepatocytes stained positively for the presence of IGF peptides using a monoclonal antibody raised against purified human IGF I/Sm-C. Although this proportion did not change following treatment with HGH and HPL, IGF I/Sm-C released by cells into culture medium was considerably increased in the presence of both hormones. Incubation with the SmC 1.2 monoclonal antibody abolished the increase in labeling index in response to IGF I/Sm-C and partially blocked the response to both HPL and HGH. These results indicate that both HPL and HGH stimulate DNA synthesis in human fetal hepatocytes and suggest that this effect is at least partly indirect through the release and paracrine action of IGF I/Sm-C. 相似文献
16.
Production of identical twin calves by embryo demisection requires a reliable system for continual monitoring of pregnancy. Both halves of bisected embryos were replaced nonsurgically into one uterine horn on Day 7 in 80 recipients. Monthly blood sampling began on Day 22 of pregnancy and transrectal echography took place between 50 and 80 days. Fifty-four recipients had elevated plasma progesterone concentrations on Day 22 (67% pregnancy rate). Of 21 pregnancies diagnosed as twins by echography, 15 live sets were born, 3 singles accompanied by a stillbirth, and 3 complete abortions. Twenty-five singleton pregnancies resulted in 23 live calves, 1 still-birth and 1 abortion. It was not possible to monitor echographically the remaining 8 pregnancies. At all stages of pregnancy studied, mean concentrations of bovine pregnancy-specific protein B (bPSPB) and estrone sulphate were higher (P<0.01) in twin (n = 17) than in single (n = 26) pregnancies, but the high individual variation obviated any predictive value for fetal number. Although bPSPB and estrone sulphate concentrations were positively correlated at most stages of normal pregnancies after Day 100, divergence was observed in the unsuccessful pregnancies between the concentrations of all 3 hormones, suggesting synthesis/release is under independent control. Measurement of bPSPB may be useful for prediction of fetal well-being, whereas estrone sulphate may reflect placental viability. 相似文献
17.
Berg JS Lin KK Sonnet C Boles NC Weksberg DC Nguyen H Holt LJ Rickwood D Daly RJ Goodell MA 《PloS one》2011,6(10):e26410
Lifelong, many somatic tissues are replenished by specialized adult stem cells. These stem cells are generally rare, infrequently dividing, occupy a unique niche, and can rapidly respond to injury to maintain a steady tissue size. Despite these commonalities, few shared regulatory mechanisms have been identified. Here, we scrutinized data comparing genes expressed in murine long-term hematopoietic stem cells with their differentiated counterparts and observed that a disproportionate number were members of the developmentally-important, monoallelically expressed imprinted genes. Studying a subset, which are members of a purported imprinted gene network (IGN), we found their expression in HSCs rapidly altered upon hematopoietic perturbations. These imprinted genes were also predominantly expressed in stem/progenitor cells of the adult epidermis and skeletal muscle in mice, relative to their differentiated counterparts. The parallel down-regulation of these genes postnatally in response to proliferation and differentiation suggests that the IGN could play a mechanistic role in both cell growth and tissue homeostasis. 相似文献
18.
Aim
Placental growth hormone (PGH) is a major growth hormone in pregnancy and acts with Insulin Like Growth Factor I (IGF-I) and Insulin Like Growth Hormone Binding Protein 3 (IGFBP3). The aim of this study was to investigate PGH, IGF-I and IGFBP3 in non-diabetic (ND) compared to Type 1 Diabetic (T1DM) pregnancies.Methods
This is a prospective study. Maternal samples were obtained from 25 ND and 25 T1DM mothers at 36 weeks gestation. Cord blood was obtained after delivery. PGH, IGF-I and IGFBP3 were measured using ELISA.Results
There was no difference in delivery type, gender of infants or birth weight between groups. In T1DM, maternal PGH significantly correlated with ultrasound estimated fetal weight (r = 0.4, p = 0.02), birth weight (r = 0.51, p<0.05) and birth weight centile (r = 0.41, p = 0.03) PGH did not correlate with HbA1c.Maternal IGF-I was lower in T1DM (p = 0.03). Maternal and fetal serum IGFBP3 was higher in T1DM. Maternal third trimester T1DM serum had a significant band at 16 kD on western blot, which was not present in ND.Conclusion
Maternal T1DM PGH correlated with both antenatal fetal weight and birth weight, suggesting a significant role for PGH in growth in diabetic pregnancy.IGFBP3 is significantly increased in maternal and fetal serum in T1DM pregnancies compared to ND controls, which was explained by increased proteolysis in maternal but not fetal serum. These results suggest that the normal PGH-IGF-I-IGFBP3 axis in pregnancy is abnormal in T1DM pregnancies, which are at higher risk of macrosomia. 相似文献19.
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully. 相似文献
20.
Rat placental lactogen-II (rPL-II) and growth hormone (rGH) in maternal and fetal serum, amniotic fluid, and placental tissue were measured by a homologous radioimmunoassay during the last half of pregnancy. rPL-II appeared first in maternal circulation and the placental tissue on day 11 of pregnancy. The maternal serum rPL-II concentration increased progressively and reached the peak value (684 +/- 76 ng/ml) on day 19, and declined thereafter up to term. rPL-II content in the tissue had a similar pattern to the maternal serum profile of rPL-II, while its concentration in the tissue increased dramatically on day 12 and remained high until day 19. Fetal serum rPL-II was detected on days 17 and 18, though its concentration was much lower (ranged between 3-10 ng/ml) than that of maternal serum. rPL-II in amniotic fluid was also detectable only on days 12-14 of pregnancy, and the peak value on day 13 was 22% of the maternal serum rPL-II concentration. The rGH concentration increased gradually as pregnancy advanced with a decline on the day before parturition. Although rGH in fetal serum increased on day 20 with a decline on the following day, it was slightly detectable in amniotic fluid on the last two days of pregnancy. The molecular profile of rPL-II in amniotic fluid and maternal serum of day 13 pregnant rats were examined by Western blotting. Anti-rPL-II serum detected two proteins with molecular weights (mol wt) of 19.5K and 20.5K in amniotic fluid and one protein with a mol wt of 20.5K in maternal serum under nonreducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献