首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

2.
基因组印迹是哺乳动物正常生长发育和行为的基础。印迹基因胰岛素样生长因子2(insulin-like growth factors II,Igf2)对胎盘及胎儿的营养供应起着不可或缺的影响。它影响胎盘的大小、形态和营养转运功能,进而影响胎儿生长的营养供应。因此Igf2表达的变化对发育编程具有重要意义,对胎盘发育和胎儿生长起着重要的作用。  相似文献   

3.
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.  相似文献   

4.
Embryonic stem (ES) cell-derived clones and chimeras are often associated with growth abnormalities during fetal development, leading to the production of over/under-weight offspring that show elevated neonatal mortality and morbidity. Due to the role played by imprinted genes in controlling fetal growth, much of the blame is pointed at improper epigenetic reprogramming of cells used in the procedures. We have analyzed the expression pattern of two growth regulatory imprinted genes, namely insulin like growth factor II (Igf2) and H19, in mouse ES cells cultured under growth restricted conditions and after in vitro aging. Culture of cells with serum-depleted media (starvation) and at high cell density (confluence) increased the expression of both imprinted genes and led to aberrant methylation profiles of differentially methylated regions in key regulatory sites of Igf2 and H19. These findings confirm that growth constrained cultures of ES cells are associated with alterations to methylation of the regulatory domains and the expression patterns of imprinted genes, suggesting a possible role of epigenetic factors in the loss of developmental potential.  相似文献   

5.
Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.  相似文献   

6.
Interactions between imprinting effects in the mouse   总被引:3,自引:0,他引:3  
Cattanach BM  Beechey CV  Peters J 《Genetics》2004,168(1):397-413
Mice with uniparental partial or complete disomies for any one of 11 identified chromosomes show abnormal phenotypes. The abnormalities, or imprinting effects, can be attributable to an incorrect dosage of maternal or paternal copies of imprinted gene(s) located within the regions involved. Here we show that combinations of partial disomies may result in interactions between imprinting effects that seemingly independently affect fetal and/or placental growth in different ways or modify neonatal and postnatal imprinting effects. Candidate genes within the regions have been identified. The findings are generally in accord with the "conflict hypothesis" for the evolution of genomic imprinting but do not clearly demonstrate common growth axes within which imprinted genes may interact. Instead, it would seem that any gene that represses or limits embryonic/fetal growth to the advantage of the mother--by any developmental means--will have been subject to evolutionary selection for paternal allele repression. Likewise, any gene that favors embryonic/fetal development at consequent cost to the mother--by any developmental means--will have faced selection for maternal allele repression. The classical Igf2-Igf2r axis may therefore be unique. The findings involve reinterpretation of older imprinting data and consequently revision of the mouse imprinting map.  相似文献   

7.
Igf2 imprinting in development and disease   总被引:5,自引:0,他引:5  
Igf2 is one of the first imprinted genes discovered and occupies a centre stage in the study of imprinting. This is because it has dramatic effects on the control of fetal growth, it is involved in growth disorders and in cancer, it interacts with products of other imprinted genes, and its imprinting status is under complex regulation in a cluster of tightly linked imprinted genes. Here we review briefly the key features of Igf2 imprinting in normal development and in disease, and hope to show what a fascinating subject of study this gene and its biology provides.  相似文献   

8.
Phenotypic characterization of Akt1 and Igf2 null mice has revealed roles for each in the regulation of placentation, and fetal and postnatal growth. Insulin-like growth factor 2 (IGF2) is encoded by the Igf2 gene and influences cellular function, at least in part, through activation of an intracellular serine/threonine kinase called AKT1. Akt1 and Igf2 null mice were originally characterized on inbred and mixed genetic backgrounds, prohibiting direct comparisons of their phenotypes. The impact of loss of AKT1 or IGF2 on placental, fetal, and postnatal function were examined following transfer of Akt1 and Igf2 null mutations to an outbred CD1 genetic background. Disruption of IGF2 did not affect AKT expression or activation. Both Akt1-/- and Igf2-/- mice exhibited decreased placental weight, fetal weight and viability. Deregulation of placental growth was similar in Akt1 and Igf2 nulls; however, disruption of Igf2 had a more severe impact on prenatal survival and postnatal growth. Placental structure, including organization of junctional and labyrinth zones and development of the interstitial, invasive, trophoblast lineage, were similar in mutant and wild-type mice. Akt1 and Igf2 null mutations affected postnatal growth. The relative impact of each gene differed during pre-weaning versus post-weaning growth phases. AKT1 had a more significant role during pre-weaning growth, whereas IGF2 was a bigger contributor to post-weaning growth. Akt1 and Igf2 null mutations impact placental, fetal and postnatal growth. Placental phenotypes are similar; however, fetal and postnatal growth patterns are unique to each mutation.  相似文献   

9.
Paternal epigenome regulates placental and fetal growth. However, the effect of paternal obesity on placenta and its subsequent effect on the fetus via sperm remains unknown. We previously discovered abnormal methylation of imprinted genes involved in placental and fetal development in the spermatozoa of obese rats. In the present study, elaborate epigenetic characterization of sperm, placenta, and fetus was performed. For 16 weeks, male rats were fed either control or a high-fat diet. Following mating studies, sperm, placenta, and fetal tissue were collected. Significant changes were observed in placental weights, morphology, and cell populations. Methylation status of imprinted genes—Igf2, Peg3, Cdkn1c, and Gnas in spermatozoa, correlated with their expression in the placenta and fetus. Placental DNA methylating enzymes and 5-methylCytosine levels increased. Furthermore, in spermatozoa, DNA methylation of a few genes involved in pathways associated with placental endocrine function—gonadotropin-releasing hormone, prolactin, estrogen, and vascular endothelial growth factor, correlated with their expression in placenta and fetus. Changes in histone-modifying enzymes were also observed in the placenta. Histone marks H3K4me3, H3K9me3, and H4ac were downregulated, while H3K27me3 and H3ac were upregulated in placentas derived from obese male rats. This study shows that obesity-related changes in sperm methylome translate into abnormal expression in the F1-placenta fathered by the obese male, presumably affecting placental and fetal development.  相似文献   

10.
Drake AJ  Liu L  Kerrigan D  Meehan RR  Seckl JR 《Epigenetics》2011,6(11):1334-1343
Exposure to an adverse early life environment is associated with increased cardio-metabolic disease risk, a phenomenon termed "programming." The effects of this are not limited to the exposed first (F1) generation but can be transmissible to a second generation (F2) through male and female lines. Using a three generation animal model of programming by initial prenatal glucocorticoid overexposure we have identified effects on fetal and placental weight in both the F1 and F2 offspring. However, the expression of candidate imprinted genes in the fetus and placenta differed between the F1 and F2, with marked parent-of-origin effects in F2. Since DNA methylation at imprinted genes is maintained at fertilization, they are potential templates for the transmission of programming effects across generations. Although we detected alterations in DNA methylation at differentially methylated regions (DMRs) of the key prenatal growth factor Igf2 in F1 and F2 fetal liver, the changes in DNA methylation at these DMRs do not appear to underlie the transmission of effects on Igf2 expression through sperm. Thus, multigenerational programming effects on birth weight and disease risk is associated with different processes in F1 and F2. These findings have implications for the pathogenesis and future attempts to stratify therapies for the "developmental component" of cardiometabolic disease.  相似文献   

11.
《Epigenetics》2013,8(11):1334-1343
Exposure to an adverse early life environment is associated with increased cardio-metabolic disease risk, a phenomenon termed "programming." The effects of this are not limited to the exposed first (F1) generation but can be transmissible to a second generation (F2) through male and female lines. Using a three generation animal model of programming by initial prenatal glucocorticoid overexposure we have identified effects on fetal and placental weight in both the F1 and F2 offspring. However, the expression of candidate imprinted genes in the fetus and placenta differed between the F1 and F2, with marked parent-of-origin effects in F2. Since DNA methylation at imprinted genes is maintained at fertilization, they are potential templates for the transmission of programming effects across generations. Although we detected alterations in DNA methylation at differentially methylated regions (DMRs) of the key prenatal growth factor Igf2 in F1 and F2 fetal liver, the changes in DNA methylation at these DMRs do not appear to underlie the transmission of effects on Igf2 expression through sperm. Thus, multigenerational programming effects on birth weight and disease risk is associated with different processes in F1 and F2. These findings have implications for the pathogenesis and future attempts to stratify therapies for the ‘developmental component’ of cardiometabolic disease.  相似文献   

12.
13.
《Epigenetics》2013,8(5):444-450
Genomic imprinting is defined as an epigenetic modification that leads to parent-of-origin specific monoallelic expression. Some current research on the fetal control growth has been focused on the study of genes that display imprinted expression in utero. Four imprinted genes, two paternally expressed (IGF2 and PEG10) and two maternally expressed (PHLDA2 and CDKN1C), are well known to play a role in fetal growth and placental development. Pregnancy loss in the general reproductive population is a very common occurrence and other genetic causes beyond chromosomal abnormalities could be involved in spontaneous miscarriages or fetal deaths, such as alteration of expression in imprinted genes particularly those related to fetal or placental growth. Quantitative Real Time PCR was performed to evaluate gene expressions patterns of the four mentioned genes in spontaneous miscarriages or fetal deaths from 38 women. Expression levels of PHLDA2 gene were upregulated in the first trimester pregnancy cases and all four imprinted genes studied were upregulated in the second trimester of pregnancy cases comparing with controls. In third trimester PEG10 was downregulated in fetal samples group. This is the first study presenting data from human imprinted genes expression in spontaneous miscarriages or fetal deaths cases from the three trimesters of pregnancy.  相似文献   

14.
15.
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.  相似文献   

16.
Igf2 (insulin‐like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene‐cluster that leads to parent‐specific expression, with current models including parental allele‐specific DNA methylation and chromatin modifications, DNA‐binding of insulator proteins (CTCFs) and three‐dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. ‘The enhancer competition model’, ‘the boundary model’ and ‘the chromatin‐loop model’ are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.  相似文献   

17.
Genomically imprinted genes are those for which expression is dependent on the sex of the parent from which they are derived. Numerous theories have been proposed for the evolution of genomic imprinting: one theory is that it is an intra-individual manifestation of classical parent -offspring conflict. This theory is unique in predicting that an arms race may develop between maternally and paternally derived genes for the control of foetal growth demands. Such antagonistic coevolution may be mediated through changes in the structure of the proteins concerned. Comparable coevolution is the most likely explanation for the rapid changes seen in antigenic components of parasites and antigen recognition components of immune systems. We have examined the evolution of insulin-like growth factor Igf2, and its antagonistic receptor Igf2r) and find that in contrast to immune genes, at the sites of mutual binding they are highly conserved. In addition, we have analysed the rate of molecular evolution of seven imprinted genes including Igf2 and Igf2r), sequenced in both mouse and rat, and had that this is the same as that of nonimprinted receptors and significantly lower than that of immune genes controlling for differences in mutation rates. Contrary to the expectations of the conflict hypothesis, we hence find no evidence for antagonistic coevolution of imprinted genes mediated by changes in sequence.  相似文献   

18.
The insulin-like growth factor 2 (Igf2) gene encodes a potent growth factor that is expressed in multiple tissues during embryonic development. Expression at this locus is mediated by genomic imprinting. In the developing endodermal tissues, imprinting of Igf2 is mediated by the interaction of a set of enhancers downstream of the linked H19 gene with a differentially methylated domain (DMD) that lies approximately 2-4 kb upstream of H19 that has a boundary or insulator function in the hypomethylated state. In the remainder of tissues that express Igf2 and H19, the cis elements that drive their correct expression and imprinting are not well understood. In addition, enhancers driving expression of Igf2 in the choroid plexus and leptomeninges, tissues where the gene is thought not to be imprinted, have not been isolated. Here we show that biallelic (non-imprinted) expression within the choroid plexus is restricted to the epithelium, and we provide evidence that a conserved intergenic region functions as an enhancer for Igf2 both in tissues where the gene is imprinted, and where Igf2 is biallelically expressed. The presence of an enhancer for imprinted tissues in the intergenic region argues for the existence of imprinting controls distinct from the DMD, which may be provided by differential methylation at sites proximal to Igf2.  相似文献   

19.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号