首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have demonstrated recently that Wilms' tumor suppressor 1 (Wt1),in addition to its role in genitourinary formation,is required for the differentiation of ganglion cells in the developing retina. Here we provide further evidence that Wt1 is associated with neuronal differentiation. Thus, the retinoblastoma-derived human cell line, Y-79, contained robust amounts of Wt1 mRNA and protein. Wt1 expression was down-regulated upon laminin-induced differentiation of Y-79 into neuron-like cells. Inhibition of Wt1 with antisense oligonucleotides dramatically reduced the capacity of undifferentiated Y-79 cells to undergo neuronal differentiation, whereas sense and missense oligonucleotides had no effect. Wt1 immunoreactivity was also detected in solid retinoblastomas, in which it resided mainly in areas with moderate proliferative activity. These findings suggest a role for Wt1 in the differentiation of retinoblastoma cells. Furthermore, Wt1 expression in retinoblastoma may reflect the potential of these tumors to initiate the early steps of neuronal differentiation.  相似文献   

2.
3.
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel phosphorylation site within the DLC1 GAP domain on serine 807. Using a phospho-S807-specific antibody, our results identify protein kinase D (PKD) to phosphorylate this site in DLC1 in intact cells. Although phosphorylation on serine 807 did not directly impact on in vitro GAP activity, a DLC1 serine-to-alanine exchange mutant inhibited colony formation more potently than the wild type protein. Our results thus show that PKD-mediated phosphorylation of DLC1 on serine 807 negatively regulates DLC1 cellular function.  相似文献   

4.
5.
6.
The interaction of the zinc finger protein WT1 with RNA aptamers has been investigated using a quantitative binding assay, and the results have been compared to those from a previous study of the DNA binding properties of this protein. A recombinant peptide containing the four zinc fingers of WT1 (WT1-ZFP) binds to representatives of three specific families of RNA aptamers with apparent dissociation constants ranging from 13.8 +/- 1.1 to 87.4 +/- 10.4 nM, somewhat higher than the dissociation constant of 4.12 +/- 0.4 nM for binding to DNA. An isoform that contains an insertion of three amino acids between the third and fourth zinc fingers (WT1[+KTS]-ZFP) also binds to these RNAs with slightly reduced affinity (the apparent dissociation constants ranging from 22.8 to 69.8 nM) but does not bind to DNA. The equilibrium binding of WT1-ZFP to the highest-affinity RNA molecule was compared to the equilibrium binding to a consensus DNA molecule as a function of temperature, pH, monovalent salt concentration, and divalent salt concentration. The interaction of WT1-ZFP with both nucleic acids is an entropy-driven process. Binding of WT1-ZFP to RNA has a pH optimum that is narrower than that observed for binding to DNA. Binding of WT1-ZFP to DNA is optimal at 5 mM MgCl(2), while the highest affinity for RNA was observed in the absence of MgCl(2). Binding of WT1 to both nucleic acid ligands is sensitive to increasing monovalent salt concentration, with a greater effect observed for DNA than for RNA. Point mutations in the zinc fingers associated with Denys-Drash syndrome have dramatically different effects on the interaction of WT1-ZFP with DNA, but a consistent and modest effect on the interaction with RNA. The role of RNA sequence and secondary structure in the binding of WT1-ZFP was probed by site-directed mutagenesis. Results indicate that a hairpin loop is a critical structural feature required for protein binding, and that some consensus nucleotides can be substituted provided proper base pairing of the stem of the hairpin loop is maintained.  相似文献   

7.
8.
Hsu TH  Chu CC  Jiang SY  Hung MW  Ni WC  Lin HE  Chang TC 《FEBS letters》2012,586(9):1287-1293
Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.  相似文献   

9.
10.
Human cytomegalovirus (HCMV) is a major renal pathogen in congenitally infected infants and renal allograft recipients. It has been shown that human kidney cells of glomerular, tubular, and vascular origin were all infected by HCMV in vitro. It has previously been demonstrated that the IE2 protein of HCMV directly associates with the zinc finger domain of Egr-1. The zinc finger region of WT1 is a sequence-specific DNA-binding domain which also recognizes the consensus DNA binding site (5'-CGCCCCCGC-3') of Egr-1, thus suggesting a possible interaction between WT1 and IE2. Here we demonstrate that HCMV IE2 binds to the C-terminal region of WT1 containing zinc finger domain in vivo as well as in vitro and that WT1 can inhibit IE2-driven transactivation of the responsive promoter. Our results suggest that WT1 may be able to regulate the functional activity of HCMV IE2. Furthermore, these data may provide new insights into the possible involvement of HCMV in WT1-related pathogeneses.  相似文献   

11.
The importance of ornithine decarboxylase (ODC) to cell proliferation is underscored by the complex array of cell-specific mechanisms invoked to regulate its synthesis and activity. Misregulation of ODC has severe negative consequences on normal cell function, including the acquisition of tumorigenic growth properties by cells overexpressing ODC. We hypothesize that ODC gene expression is a candidate target for the anti-proliferative function of certain tumor suppressors. Here we show that the Wilms' tumor suppressor WT1 binds to multiple sites within the human ODC promoter, as determined by DNase I protection and methylation interference assays. The expression of WT1 in transfected HCT 116, NIH/3T3 and HepG2 cells represses activity of the ODC promoter controlling expression of a luciferase reporter gene. In contrast WT1 expression enhances ODC promoter activity in SV40-transfected HepG2 cells. Both the extent of modulation of ODC gene expression and the mediating WT1 binding elements are cell specific. Constructs expressing WT1 deletion mutants implicate two regions required for repressor function, as well as an intrinsic activation domain. Understanding the regulation of ODC gene expression by WT1 may provide valuable insights into the roles of both WT1 and ODC in development and tumorigenesis.  相似文献   

12.
Summary— The wild-type human p53 tumor suppressor gene was tested for its ability to modulate cytotoxic activity of in vitro activated peripheral blood lymphocytes. Peripheral blood mononuclear cells (PBMCs) were stimulated by phytohemagglutinin (PHA), interferon α2b (IFNα2b), interleukin 2 (IL-2) or their combinations to induce cytotoxicity. This stimulation significantly increased the percentage of cells expressing p53, which was at its maximum when induced by IL-2 combined with IFNα2b. The role of p53 in the modulation of different aspects of cytotoxic activity of these cells was analyzed by studying the effects of p53 abrogation by antisense oligonucleotide (p53 AS) treatment in comparison with p53 sense or scrambled (missense) oligonucleotide (p53 S or p53 MS) treatment. We show that p53 plays a key role through induction of apoptosis in target cells (tumor necrosis factor pathway) rather than through osmolytic degeneration (perforin pathway) which is only slightly increased by p53 abrogation. Meanwhile, in vitro abrogation of p53 expression in PBL was found to be accompanied by an increase of CD8+ lymphocytes and an important increase of the CD56 ‘bright’ NK cell sub-population.  相似文献   

13.
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.  相似文献   

14.
15.
16.
The tumor suppressor protein TSLC1 is involved in cell-cell adhesion   总被引:17,自引:0,他引:17  
TSLC1 is a tumor suppressor gene encoding a member of the immunoglobulin (Ig) superfamily. The significant homology of its extracellular domain with those of other Ig superfamily cell adhesion molecules (IgCAMs) has raised the possibility that TSLC1 participates in cell-cell interactions. In this study, the physiological properties of TSLC1 were investigated in Madin-Darby canine kidney (MDCK) cells expressing TSLC1 tagged with green fluorescent protein (GFP) as well as in the cells that express endogenous TSLC1. Biochemical analysis has revealed that TSLC1 is an N-linked glycoprotein with a molecular mass of 75 kDa and that it forms homodimers through cis interaction within the plane of the cell membranes. Confocal laser scanning microcopy of the cells expressing TSLC1 showed the localization patterns characteristic to adhesion molecules. At the beginning of cell attachment, TSLC1 accumulated in interdigitated structures at cell-cell boundaries, but, when cells reached a confluence, TSLC1 was distributed all along the cell membranes. In polarized cells, TSLC1 was recruited to the lateral membrane, implying trans interaction of TSLC1 between neighboring cells. In support of this notion, MDCK cells expressing TSLC1-GFP showed a significant level of cell aggregation in the absence or presence of Ca(2+) and Mg(2+). Taken together, these results indicate that TSLC1 mediates intracellular adhesion through homophilic interactions in a Ca(2+)/Mg(2+)-independent manner.  相似文献   

17.
Wagner KD  Wagner N  Schley G  Theres H  Scholz H 《Gene》2003,305(2):217-223
The Wilms' tumor gene Wt1 encodes a zinc finger protein, which is required for normal formation of the genitourinary system and mesothelial tissues. Our recent findings indicate that Wt1 also plays a critical role in the development of ganglion cells in the vertebrate retina. Here we show that the POU-domain factor Pou4f2 (formerly Brn-3b), which is necessary for retinal ganglion cell survival, is up-regulated in human embryonic kidney (HEK)293 cells with stable Wt1 expression. Consistent with our previous observations of increased Pou4f2 mRNA in stably Wt1-transfeced HEK293 cells [EMBO J. 21 (2002) 1398], endogenous Pou4f2 was also elevated at the protein level in the HEK293 transfectants as well as in U2OS osteosarcoma cells that expressed an inducible Wt1 isoform. Transient co-transfection of a Wt1 expression construct activated a Pou4f2 promoter-reporter construct approximately 4-fold. Stimulation of the Pou4f2 promoter required a Wt1 binding element that was similar to a degenerative consensus site previously identified in other Wt1 responsive genes. Double-immunofluorescent labeling revealed co-expression of Pou4f2 and Wt1 in glomerular podocytes of adult kidney and in developing retinal ganglion cells of mouse embryos. Pou4f2 immunoreactivity was absent from the retinas of Wt1(-/-) embryos. In conclusion, we identified Pou4f2 as a novel downstream target gene of Wt1. Co-localization of both proteins in glomerular podocytes of the kidney and in developing retinal ganglion cells suggests a role for Wt1-Pou4f2 interaction in these tissues.  相似文献   

18.
Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ~33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.  相似文献   

19.
20.
The von Hippel-Lindau tumour suppressor protein (pVHL) participates in many cellular processes including oxygen sensing, microtubule stability and primary cilia regulation. Recently, we identified ATP-dependent motor complex kinesin-2 to endogenously bind the full-length variant of VHL (pVHL30) in primary kidney cells, and mediate its association to microtubules. Here we show that pVHL also endogenously binds the neuronal kinesin-2 complex, which slightly differs from renal kinesin-2. To investigate the role of kinesin-2 in pVHL mobility, we performed fluorescence recovery after photobleaching (FRAP) experiments in neuroblastoma cells. We observe that pVHL30 is a highly mobile cytoplasmic protein, which becomes an immobile centrosomal protein after ATP-depletion in living cells. This response to ATP-depletion is independent of GSK3beta-dependent phosphorylation of pVHL30. Furthermore, VHL variant alleles with reduced binding to kinesin-2 fail to respond to ATP-depletion. Accordingly, interfering with pVHL30-KIF3A interaction by either overexpressing a dominant negative construct or by reducing endogenous cellular levels of KIF3A by RNAi abolishes pVHL's response to ATP-depletion. From these data we suggest that mobility of a subcellular pool of pVHL is regulated by the ATP-dependent kinesin-2 motor. Kinesin-2 driven mobility of cytoplasmic pVHL might enable pVHL to function as a tumour suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号