首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of nitrogen from industrial wastewaters carrying about 1,000 mg NH4-N and urea-N/l was investigated on a laboratory scale. The use of a three-step nitryfying activated sludge with adjustment of pH from step to step resulted in 99% oxidation of both forms of nitrogen to nitrites. The efficiency of nitrification was 18 mg N/l/h. Total time of wastewater aeration depended on nitrogen concentration and was 33-54 hours. Complete dentrification of NO2-N was obtained in packed-bed reactor with the use of acetic acid as a carbon source. Efficiency of denitrification was 361 mg N/l/h.  相似文献   

2.
Heterotrophic nitrification by Alcaligenes faecalis DSM 30030 was not restricted to media containing organic forms of nitrogen. In both peptone-meat extract and defined media with ammonium and citrate as the sole nitrogen and carbon sources, respectively, NO2-, NO3-, NO, and N2O were produced under aerobic growth conditions. Heterotrophic nitrification was not attributable to old or dying cell populations. Production of NO2-, NO3-, NO, and N2O was detectable shortly after cultures started growth and proceeded exponentially during the logarithmic growth phase. NO2- and NO3- production rates were higher for cultures inoculated in media with pH values below 7 than for those in media at alkaline pH. Neither assimilatory nor dissimilatory nitrate or nitrite reductase activities were detectable in aerobic cultures.  相似文献   

3.
Heterotrophic nitrification by Alcaligenes faecalis DSM 30030 was not restricted to media containing organic forms of nitrogen. In both peptone-meat extract and defined media with ammonium and citrate as the sole nitrogen and carbon sources, respectively, NO2-, NO3-, NO, and N2O were produced under aerobic growth conditions. Heterotrophic nitrification was not attributable to old or dying cell populations. Production of NO2-, NO3-, NO, and N2O was detectable shortly after cultures started growth and proceeded exponentially during the logarithmic growth phase. NO2- and NO3- production rates were higher for cultures inoculated in media with pH values below 7 than for those in media at alkaline pH. Neither assimilatory nor dissimilatory nitrate or nitrite reductase activities were detectable in aerobic cultures.  相似文献   

4.
Partial nitritation using inhibition of free ammonia and free nitric acid is an effective technique for the treatment of high concentrations of ammonium in wastewaters. This technique was applied to the digester liquor of swine wastewater and the stability of its long-term operation was investigated. Partial nitritation was successfully maintained at a nitrogen loading rate (NLR) of 1.0 kg N m(-3)d(-1) for 120 days without acclimatization of nitrite oxidizing bacteria (NOB) to the inhibitory compounds (free ammonia and free nitric acid). The conversion efficiencies of NH(4)-N to NO(2)-N and to NO(3)-N were determined to be around 58% and <5%, respectively. After the establishment of partial nitritation, the influence of swine wastewater on the Anammox reaction was examined using continuous flow treatment experiments. Consistent nitrogen removal was achieved for 70 days at a nitrogen removal rate (NRR) of 0.22 kg N m(-3)d(-1) and the color of Anammox bacteria changed from red to greyish black. The NO(2)-N consumption and the NO(3)-N production increased concurrently and the Anammox reaction ratio was estimated to be 1:1.67:0.53, which is different from that reported previously (1:1.32:0.26).  相似文献   

5.
A mechanistically based nitrification model was formulated to facilitate determination of both NH(4)(+)-N to NO(2)(-)-N and NO(2)(-)-N to NO(3)(-)-N oxidation kinetics from a single NH(4)(+)-N to NO(3)(-)-N batch-oxidation profile by explicitly considering the kinetics of each oxidation step. The developed model incorporated a novel convention for expressing the concentrations of nitrogen species in terms of their nitrogenous oxygen demand (NOD). Stoichiometric coefficients relating nitrogen removal, oxygen uptake, and biomass synthesis were derived from an electron-balanced equation.%A parameter identifiability analysis of the developed two-step model revealed a decrease in correlation and an increase in the precision of the kinetic parameter estimates when NO(2)(-)-N oxidation kinetics became increasingly rate-limiting. These findings demonstrate that two-step models describe nitrification kinetics adequately only when NH(4)(+)-N to NO(3)(-)-N oxidation profiles contain sufficient information pertaining to both nitrification steps. Thus, the rate-determining step in overall nitrification must be identified before applying conventionally used models to describe batch nitrification respirograms.  相似文献   

6.
the research aim of this study was to characterize an isolated native strain of Chlorella sp. ACUF_802, well adapted to a high nitrate concentration environment and to investigate its potential to nitrate and phosphate removal from industrial wastewaters with the minimal addition of chemical reagents and energy. The isolated strain was identified and evaluated for its capability to support biomass growth and nutrient removal from synthetic wastewater in batch tests using different concentrations of carbon and nitrogen, different carbon sources and N:P ratios. The strain was isolated via the plating method from the settler of a pilot scale moving bed biofilm reactor performing a nitrification process. The strain was identified using molecular analysis with rDNA primers. Using sodium bicarbonate as carbon source, the batch productivity (71.43 mg L?1 day?1) of the strain Chlorella sp. ACUF_802 was calculated with a logistic model and compared to the values reported in the literature. Assays on the effect of the N:P ratio indicated that the productivity was increased 36% when the N:P ratio was close to 1 (111.96 mg L?1 day?1), but for a complete phosphorus removal a 5:1 N:P ratio with nitrate concentrations ≤125 mg?L?1 is recommended. The isolated microalgae strain Chlorella sp. ACUF_802 showed versatility to grow in the synthetic industrial wastewaters tested and can be considered as an appropriate organism for nitrogen removal from industrial wastewaters in the presence of an organic or inorganic carbon source.  相似文献   

7.
Industrial wastes from the production of nitrogen fertilizers, containing about 900 mg N/1, (450 mg NH4-N, 300 mg urea-N and 150 mg NO3-N), showed high activity of I stage nitrifying bacteria. The addition of phosphorus to the wastes increases the intensity of nitrification two-fold and also increase the rate of urea hydrolysis. An attempt was made to obtain a nitrifying activated sludge. CaCO3 and Fe(OH)3 were used as carriers and the culture was aerated with air enriched with CO2. After 90 days an activated sludge was obtained which nitrified an average of 80% NH4-N and urea-N with 4-day aeration time of the wastes. In contrast to the activated sludge, the presence of nitrification phase I and II in biological bed was observed, but the efficiency of the process was considerably low (about 38%).  相似文献   

8.
The anoxic-oxic activated-sludge process has been evaluated in a laboratory investigation as a means for effective treatment of cyanide-laden wastewaters, with phenols used as the organic carbon sources for denitrification reactions. The performance of the process was evaluated at different levels of feed cyanide concentration and mean cell residence time (MCRT). The results obtained indicate that the phenolic compounds used can be effectively used as the organic carbon sources to promote denitrification reactions. The effects of cyanide inhibition on overall TOC removal can be alleviated at longer MCRTs. Between 1.2 and 2.2 g TOC can be utilized per gram NO(2) + NO(3) (-) -N removed in the anoxic chamber depending on the prevailing MCRT. Microbial oxidation of cyanide and thiocyanate which yields ammonia is the main mechanism responsible for the removal of cyanide and thiocyanate observed in the anoxic-oxic activated-sludge process. Excellent removal efficiencies have been observed with feed concentrations up to 60 mg CN(-)/L and 100 mg SCN(-)/L Frequent exposure of autotrophic and aerobic cyanideutilizing microbes does not impede their activities in the oxic environment. Good nitrification and denitrification efficiencies are attainable in the anoxic-oxic activated-sludge process in the presence of high feed cyanide and thiocyanate concentrations, provided that MCRT is maintained at a desirable level. As a result, the microbial degradation of cyanide and thiocyanate in conjunction with nitrification and denitrification to produce innocuous nitrogen gas is feasible in the anoxic-oxic activated-sludge process.  相似文献   

9.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

10.
火烧对草地土壤氮总矿化、硝化及无机氮消耗速率的影响   总被引:9,自引:1,他引:8  
采用同位素^15N库稀释技术结合扰动较小的管型取样法,测定了羊草草地火烧区与未烧区不同季节土壤氮的总矿化速率、总硝化速率、无机氮消耗速率.结果表明,火烧地的氮总矿化与硝化速率在牧草返青后的4、5月份均高于未烧地,7月份差异不显著,到生长季末的9月份又低于未烧地;火烧地NH^4-N的消耗速率7月份以前均高于未烧地,9月份低于未烧地,N03^--N的消耗4、5份火烧地要高于未烧地,7、9月份又低于未烧地;火烧地土壤NH4^ -N含量在4、5和7月份均高于未烧地,9月份基本没有差别,而N03^--N在4、5月份无大差别,7、9月份高于未烧地.  相似文献   

11.
Xu J  Zhu L  Ding W  Feng LJ  Xu XY 《应用生态学报》2011,22(4):1027-1032
针对寡营养生境下生物脱氮过程碳源不足等问题,开展不同间歇曝气方式对微污染源水生物接触氧化修复系统脱氮性能的影响研究,探究修复系统短程硝化反硝化的可行性与过程机理.结果表明:在停曝-曝气时间为8 h-16 h的间歇曝气方式(Ⅰ)下启动的生物接触氧化修复系统,其铵态氮(NH+4-N)、高锰酸盐指数(CODMn)、总氮(TN)的平均去除率分别稳定在93.0%、78.1%、19.4%;而在停曝-曝气时间为16 h-8 h的间歇曝气方式(Ⅱ)下运行修复系统,其NH+4-N、CODMn平均去除率仍能分别维持在81.2%、76.4%,体系内NO-2-N发生积累,TN去除率增至50%以上.对工况Ⅱ下修复系统周期内氮素转化特性分析发现,在确保出水NH+4-N、溶解氧(DO)浓度达标的前提下,缩短曝气时间可将体系DO长时间控制在0.5~1.5 mg·L-1,亚硝酸氧化菌(NOB)生长及其活性受到抑制,NO-2-N明显累积,最终实现了微污染源水生物接触氧化修复系统的短程生物脱氮.  相似文献   

12.
Nitrogen removal from animal waste treatment water by anammox enrichment   总被引:8,自引:0,他引:8  
The aim of this work was to examine the applicability of the anaerobic ammonium oxidation (anammox) process to three kinds of low BOD/N ratio wastewaters from animal waste treatment processes in batch mode. A rapid decrease of NO(2)(-) and NH(4)(+) was observed during incubation with wastewaters from AS and UASB/trickling filter and their corresponding control artificial wastewaters. This nitrogen removal resulted from the anammox reaction, because the ratio of removed NO(2)(-) and NH(4)(+) was close to the theoretical ratio of the anammox reaction. Comparison of the inorganic nitrogen removal rate of the actual wastewater and that of control artificial wastewater showed that these two kinds of wastewater were very suitable for anammox treatment. Incubation with wastewater from RW did not show a clear anammox reaction; however, diluting it by half enabled the reaction, suggesting the presence of an inhibitory factor. This study showed that the three kinds of wastewater from animal waste treatment processes were suitable for anammox treatment.  相似文献   

13.
城市化对湿地松人工林氮素供应的影响   总被引:4,自引:0,他引:4  
以位于南昌市城乡梯度(城区、郊区和乡村)的湿地松人工林为研究对象,采用离子交换树脂袋法,估测城乡梯度森林土壤有效氮的季节动态,分析城市化对土壤供氮能力的影响.结果表明:湿地松人工林土壤有效氮的供应存在明显的季节波动,其中秋、冬季铵态氮高于春、夏季,而春、夏季硝态氮、矿质氮和相对硝化速率高于秋、冬季(P<0.05);有效氮供应的季节动态与湿地松的生长节律(即需氮过程)基本吻合.城乡梯度不同位置森林土壤有效氮及其各组分与相对硝化速率的差异明显,城区均显著高于乡村(P<0.05);城市化会加快森林土壤的矿化和硝化过程,增强土壤的供氮能力,提高土壤中硝态氮含量.建议在城市森林建设中应配置需氮能力强,特别是对硝态氮吸收偏好的地被植物,减缓城市森林中有效氮的流失及其引发的环境污染.  相似文献   

14.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

15.
Emissions of N2O from cover soils of both abandoned (> 30 years) and active landfills greatly exceed the maximum fluxes previously reported for tropical soils, suggesting high microbial activities for N2O production. Low soil matrix potentials (<-0.7 MPa) indicate that nitrification was the most likely mechanism of N2O formation during most of the time of sampling. Soil moisture had a strong influence on N2O emissions. The production of N2O was stimulated by as much as 20 times during laboratory incubations, when moisture was increased from -2.0 MPa to -0.6 MPa. Additional evidence from incubation experiments and delta13C analyses of fatty acids (18:1) diagnostic of methanotrophs suggests that N2O is formed in these soils by nitrification via methanotrophic bacteria. In a NH3(g)-amended landfill soil, the rate of N2O production was significantly increased when incubated with 100 ppmv methane compared with 1.8 ppmv (atmospheric) methane. Preincubation of a landfill soil with 1% CH4 for 2 weeks resulted in higher rates of N2O production when subsequently amended with NH3(g) relative to a control soil preincubated without CH4. At one location, at the soil depth (9-16 cm) of maximum methane consumption and N2O production, we observe elevated concentrations of organic carbon and nitrogen and distinct minima in delta15N (+1.0%) and delta13C (-33.8%) values for organic nitrogen and organic carbon respectively. A delta13C value of -39.3% was measured for 18:1 carbon fatty acids in this soil, diagnostic of type II methanotrophs. The low delta15N value for organic nitrogen is consistent with N2 fixation by type II methanotrophs. These observations all point to a methanotrophic origin for the organic matter at this depth. The results of this study corroborate previous reports of methanotrophic nitrification and N2O formation in aqueous and soil environments and suggest a predominance of type II rather than type I or type X methanotrophs in this landfill soil.  相似文献   

16.
The functional robustness of biofilms in a wastewater nitrification reactor, and the gene pools therein, were investigated. Nitrosomonas and Nitrosospira spp. were present in similar amounts (cloning-sequencing of ammonia-oxidizing bacteria 16S rRNA gene), and their estimated abundance (1.1 x 10(9) cells g(-1) carrier material, based on amoA gene real-time PCR) was sufficient to explain the observed nitrification rates. The biofilm also had a diverse community of heterotrophic denitrifying bacteria (cloning-sequencing of nirK). Anammox 16S rRNA genes were detected, but not archaeal amoA. Dispersed biofilms (DB) and intact biofilms (IB) were incubated in gas-tight reactors at different pH levels (4.5 and 5.5 vs. 6.5) while monitoring O(2) depletion and concentrations of NO, N(2)O and N(2) in the headspace. Nitrification was severely reduced by suboptimal O(2) concentrations (10-100 microM) and low pH (IB was more acid tolerant than DB), but the N(2)O/NO(3)(-) product ratio of nitrification remained low (<10(-3)). The NO(2)(-) concentrations during nitrification were generally 10 times higher in DB than in IB. Transient NO and N(2)O accumulation at the onset of denitrification was 10-10(3) times higher in DB than in IB (depending on the pH). The contrasting performance of DB and IB suggests that the biofilm structure, with anoxic/micro-oxic zones, helps to stabilize functions during anoxic spells and low pH.  相似文献   

17.
The effect of benzene on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. Benzene at 10 mg/L inhibited nitrate formation by 53%, whereas at 5 mg/L there was no inhibition. For initial benzene concentrations of 0, 7, and 10 mg/L, the specific rates of NO(3)(-)-N production were 0.545 +/- 0.101, 0.306 +/- 0.024, and 0.141 +/- 0.010 g NO(3)(-)-N/g microbial protein-N.h, respectively. The specific rates of benzene consumption at 7, 12, and 20 mg/L were 0.034 +/- 0.003, 0.050 +/- 0.006, and 0.027 +/- 0.002 g/g microbial protein-N.h, respectively. Up to a concentration of 10 mg/L, benzene was first oxidized to phenol, which was later totally oxidized to acetate. Benzene at higher concentrations (20 and 30 mg/L) was converted to intermediates other than acetate, phenol, or catechol. These results suggest that this type of nitrifying consortium coupled with a denitrification system may have promising applications for complete removal of nitrogen and benzene from wastewaters.  相似文献   

18.
Synthetic wastewaters were prepared with different influent concentrations of ammonia nitrogen (NH3–N) and COD and the treatment studies were conducted using a rotating biological contactor (RBC). If organic removal and nitrification can be simultaneously effected in one process, it will be an ideal solution to water pollution control. The RBC used in the present study was a four stage laboratory model and the discs were modified by attaching porous netlon sheets to enhance biofilm area. The COD loads (S 0) used were about 1000 and 1500?mg/l whereas NH3–N concentrations used were in the range of 20 to 185?mg/l. Hydraulic load (q) of 0.03?m3?.?m-2?.?d-1 and ammonia nitrogen loadings in the range of 0.66 to 5.5?g NH3–N?.?m-2?.?d-1 were used. The RBC was operated at two different rotating speeds of 6 and 12?rpm. The results showed that the nitrification and percentage of COD removal were not affected up to the value of the COD/NH3–N in the range from 47 to 23 at w=6?rpm and for an average influent COD of 1003?mg/l. Beyond that range only the nitrification rate decreased much whereas the percentage of COD removal was not affected. Similarly, at an influent COD load of 1557?mg/l, the nitrification and percentage COD removal were not affected for the value of the COD/NH3–N in the range from 44 to 23 but beyond that range only the nitrification rate decreased while the percentage of COD removal was approximately constant and still high. A correlation plot between the NH3–N removed and NH3–N applied was presented at a rotating speed of 6?rpm and it was found that the nitrification rate of 3.93?g NH3–N?.?m-2?.?d-1 was achieved at ammonia loading of 5.55?g NH3–N?.?m-2?.?d-1. Also the results at w=12?rpm showed improvement of nitrification rate over those at 6?rpm.  相似文献   

19.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

20.
Soil microorganisms are important sources of the nitrogen trace gases NO and N2O for the atmosphere. Present evidence suggests that autotrophic nitrifiers such as Nitrosomonas europaea are the primary producers of NO and N2O in aerobic soils, whereas denitrifiers such as Pseudomonas spp. or Alcaligenes spp. are responsible for most of the NO and N2O emissions from anaerobic soils. It has been shown that Alcaligenes faecalis, a bacterium common in both soil and water, is capable of concomitant heterotrophic nitrification and denitrification. This study was undertaken to determine whether heterotrophic nitrification might be as important a source of NO and N2O as autotrophic nitrification. We compared the responses of N. europaea and A. faecalis to changes in partial O2 pressure (pO2) and to the presence of typical nitrification inhibitors. Maximal production of NO and N2O occurred at low pO2 values in cultures of both N. europaea (pO2, 0.3 kPa) and A. faecalis (pO2, 2 to 4 kPa). With N. europaea most of the NH4+ oxidized was converted to NO2-, with NO and N2O accounting for 2.6 and 1% of the end product, respectively. With A. faecalis maximal production of NO occurred at a pO2 of 2 kPa, and maximal production of N2O occurred at a pO2 of 4 kPa. At these low pO2 values there was net nitrite consumption. Aerobically, A. faecalis produced approximately the same amount of NO but 10-fold more N2O per cell than N. europaea did. Typical nitrification inhibitors were far less effective for reducing emissions of NO and N2O by A. faecalis than for reducing emissions of NO and N2O by N. europaea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号