共查询到20条相似文献,搜索用时 15 毫秒
1.
V. Ramachandra Murty Jayadev Bhat Pk. A. Muniswaran 《Biotechnology and Bioprocess Engineering》2002,7(6):367-370
Candida cylindracea lipase was immobilized by adsorption on acid washed glass beads. It was observed that protein loading of the support depends on the size of the particle, with smaller particle containing higher amount of protein per unit weight. Initial reaction rate linearly varied up to enzyme concentration of 17.25 U/mL. Amount of free fatty acids produced was linearly proportional up to the enzyme loading of 1650 μg/g of bead. Achievement of chemical equilibrium took longer time in the case of less protein loading. Degree of hydrolysis was found to decrease in second and third consecutive batch operations on repeated use of immobilized lipase. 相似文献
2.
3.
In this research, investigations were made on material transfer mechanisms and optimum operation mode for sequencing batch reactor system removing phosphorus and nitrogen simultaneously. Phosphorus release characteristics were expressed in the Monod equation, in which the reaction rate was replaced with specific phosphorus release (SPR) rate. The rate of SPR was increased during the first 80 days, but increased sharply to reach 0.003 hr-1 afterwards. Phosphorus removal efficiencies were about 60% in the first 80 days, 75% after 80 days, and above 95% after 120 days. After 120 days, phosphorus concentration in effluent was below 0.5 mgl-1 when 8 mgl-1 was in the influent and the released phosphorus after 3-hour-anaerobic period was 60 mgl-1. In the proposed optimum operation strategy (2-hour anaerobic react, 3-hour aerobic react, 4-hour anoxic react, and 3-hour settle and draw), phosphorus reappeared if the oxidized nitrogen was completely denitrified. In order to prevent this undesirable phosphorus release, anoxic period should be reduced to the extent of which the minimal concentration of the oxidized nitrogen existed. Phosphorus removal efficiency was stable under shock load as 5 times high as normal phosphorus concentration.Abbreviations dP/dt
Phosphorus release rate (mgl-1 hr-1)
- K
Phosphorus release yield constant (mg P mg TOC-1)
- dS/dt
Substrate utilization rate (mgl-1 hr-1)
- X
Mixed liquor suspended solid (MLSS, mgl-1)
- S
Soluble TOC (mgl-1)
- k-qmax (Ymax)-1
Maximum substrate utilization rate
- Y
Yield coefficient (mg mg-1)
- Ks
Saturation constant (mgl-1)
- Pmax
kK-Maximum phosphorus release rate (hr-1)
- Prel
Total released phosphorus (mgl-1)
- Po
Phosphorus in influent (mgl-1)
- Pe
phosphorus in effluent (mgl-1)
- t
Anaerobic period (hr) 相似文献
4.
Model-based optimization of a sequencing batch reactor for biological nitrogen removal 总被引:1,自引:0,他引:1
An optimal operating mode for a sequencing batch reactor was determined via a model-based optimization. Synthetic wastewater containing mainly organic matter (as glucose) and nitrogen (as ammonium chloride) was treated without any addition of an external carbon source to accomplish denitrification step. A simplified model was used to describe process dynamics, comprised of six ordinary differential equations and an empirical correlation for oxygen consumption rate. Batch cycle time was the chosen objective function to be minimized for a fixed volume of waste to be treated. Furthermore, as SBR operation is divided in two major phases - aerobic and anoxic, to achieve total pollutants removal within minimum time, these phases can be repeatedly alternated. To ensure availability of organic matter necessary for denitrification, these two phases were combined with feed steps. Different feed strategies were tested using one, two or three feed steps. A successive quadratic programming algorithm was used, and maximum values for final COD, nitrate and ammonium concentrations, as well as maximum feed pump flow rate were some the process constraints. One step feed strategy was indicated by the optimization leading to a batch cycle time of 5h. 相似文献
5.
Dong Wei Xiaodong Xue Shuwei Chen Yongfang Zhang Liangguo Yan Qin Wei Bin Du 《Applied microbiology and biotechnology》2013,97(20):9235-9243
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater. 相似文献
6.
Biological removal of nitrogen is a two-step process: aerobic autotrophic microorganisms oxidize ammoniacal nitrogen to nitrate, and the nitrate is further reduced to elementary nitrogen by heterotrophic microorganisms under anoxic condition with concomitant organic carbon removal. Several state variables are involved which render process monitoring a demanding task, as in most biotechnological processes, measurement of primary variables such as microorganism, carbon and nitrogen concentrations is either difficult or expensive. An alternative is to use a process model of reduced order for on-line inference of state variables based on secondary process measurements, e.g. pH and redox potential. In this work, two modeling approaches were investigated: a generic reduced order model based on the generally accepted IAWQ No. 1 Model [M. Henze, C.P.L., Grady, W., Gujer, G.V.R., Marais, T., Matsuo, Water Res. 21 (5) (1987) 505-515]-generic model (GM), and a reduced order model specially validated with the data acquired from a benchscale sequential batch reactor (SBR) specific model (SM). Model inaccuracies and measurement errors were compensated for with a Kalman filter structure to develop two state observers: one built with GM, the generic observer (GO), and another based on SM, the specific observer (SO). State variables estimated by GM, SM, GO and SO were compared to experimental data from the SBR unit. GM gave the worst performance while SM predictions presented some model to data mismatch. GO and SO, on the other hand, were both in very good agreement with experimental data showing that filters add robustness against model errors, which reduces the modeling effort while assuring adequate inference of process variables. 相似文献
7.
Nitrite accumulation in a sequencing batch reactor during the aerobic phase of biological nitrogen removal 总被引:3,自引:0,他引:3
Accumulation of nitrite occurred during the aerobic phase of a sequencing batch reactor (SBR) operating to remove nitrogen from synthetic waste water. Although present, heterotrophic nitrifiers were not involved in the nitrification of the SBR. The activity of autotrophic nitrite oxidizers was reduced in the SBR where free ammonia was the main inhibitor for the nitrite oxidation. Nitrite build-up in the SBR was reduced when the aerobic phase was extended. All the ammonia could be oxidized when the aerobic phase was longer than four hours. The accumulated nitrite and nitrate were removed completely in the post-anoxic phase. 相似文献
8.
Summary Maximum lipase production byAspergillus foetidus was obtained from cultures grown in the medium of 2% olive oil and 0.5% sucrose. The optimal conditions for the production of lipases in the Multigen fermenters were found to be at 500rpm with an airflow of 1.5 liter per mimute. Immobilization of the fungal source was found to be infeasible in natural polymers. 相似文献
9.
10.
A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater 总被引:2,自引:0,他引:2
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand
(COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles
with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level
build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required
for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%)
was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic
nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost
absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and
the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent
contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap
and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal
from abattoir wastewater. 相似文献
11.
12.
《Biochemical Engineering Journal》2007,36(3):365-370
The information of nutrient dynamics is essential for the precise control of effluent quality discharged from biological wastewater treatment processes. However, these variables can usually be determined with a significant time delay. Although the final effluent quality can be analyzed after this delay, it is often too late to make proper adjustments. In this paper, a neural network approach, a software sensor, was proposed for the real-time estimation of nutrient concentrations and overcoming the problem of delayed measurements. In order to improve the neural network performance, a split network structure applied separately for anaerobic and aerobic conditions was employed with dynamic modeling methods such as auto-regressive with exogenous inputs. The proposed methodology was applied to a bench-scale sequencing batch reactor (SBR) for biological nutrient removal. The extrapolation problem of neural networks was possible to be partially overcome with the aid of multiway principal component analysis because of its ability of detecting of abnormal situations which could generate extrapolation. Real-time estimation of PO43−, NO3− and NH4+ concentrations based on neural network was successfully carried out with the simple on-line information of the SBR system only. 相似文献
13.
Youngrip Han Kraig Johnson Donald Hayes Hua Xu Youngik Choi 《Biotechnology and Bioprocess Engineering》2013,18(5):989-999
The investigation aimed to present mathematical models for describing the dynamic behavior of the dissolved organic matter removal and nitrification in the Aerated Submerged Bio-Film (ASBF) for a plug-flow reactor. Based on the experimental data from the batch system of the ASBF pilot plant, mathematical models for the plug-flow reactor were developed to predict dissolved organic matter and ammonia nitrogen removal rates as a function of heterotrophic and autotrophic bacteria populations, dissolved organic matter concentrations, ammonia nitrogen concentrations, dissolved oxygen concentrations, and temperature. The mathematical models for dissolved organic matter and ammonia nitrogen removal in ASBF include two differential equations reflecting heterotrophic and autotrophic bacteria populations, and a number of kinetic parameters. Consequently, the results present a better insight into the dynamics behavior of heterotrophic and autotrophic biofilm growth and their practical application to wastewater for dissolved organic matter and ammonia nitrogen removal process. The mathematical model for ammonia nitrogen and dissolved organic matter removals present good results for the plug-flow reactor. 相似文献
14.
Haydée De Clippeleir Siegfried E. Vlaeminck Marta Carballa Willy Verstraete 《Bioresource technology》2009,100(21):5010-5015
Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h−1) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h−1) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h−1 removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L−1 d−1. 相似文献
15.
16.
A whole-cell biotransformation system for the conversion of d-fructose to d-mannitol was developed in Escherichia coli by constructing a recombinant oxidation/reduction cycle. First, the mdh gene, encoding mannitol dehydrogenase of Leuconostoc pseudomesenteroides ATCC 12291 (MDH), was expressed, effecting strong catalytic activity of an NADH-dependent reduction of d-fructose to d-mannitol in cell extracts of the recombinant E. coli strain. By contrast whole cells of the strain were unable to produce d-mannitol from d-fructose. To provide a source of reduction equivalents needed for d-fructose reduction, the fdh gene from Mycobacterium vaccae N10 (FDH), encoding formate dehydrogenase, was functionally co-expressed. FDH generates the NADH used for d-fructose reduction by dehydrogenation of formate to carbon dioxide. These recombinant E. coli cells were able to form d-mannitol from d-fructose in a low but significant quantity (15 mM). The introduction of a further gene, encoding the glucose facilitator protein of Zymomonas mobilis (GLF), allowed the cells to efficiently take up d-fructose, without simultaneous phosphorylation. Resting cells of this E. coli strain (3 g cell dry weight/l) produced 216 mM d-mannitol in 17 h. Due to equimolar formation of sodium hydroxide during NAD+-dependent oxidation of sodium formate to carbon dioxide, the pH value of the buffered biotransformation system increased by one pH unit within 2 h. Biotransformations conducted under pH control by formic-acid addition yielded d-mannitol at a concentration of 362 mM within 8 h. The yield Y
D-mannitol/D-fructosewas 84 mol%. These results show that the recombinant strain of E. coli can be utilized as an efficient biocatalyst for d-mannitol formation. 相似文献
17.
Nutrient removal and sludge age in a sequencing batch reactor 总被引:1,自引:0,他引:1
A. Bernal-Martínez Ó. González-Barceló S. González-Martínez 《Bioprocess and biosystems engineering》2000,23(1):41-45
The aim of this work was to establish a relation between the mean cellular retention time and the ability of activated sludge to remove phosphate and ammonium. A sequencing batch reactor (SBR) with a total volume of 1.94 m3 was fed with municipal wastewater and was operated under four different organic loading rates to obtain sludge ages of 23, 16, 6, and 3 days. The operational strategy included fill, anaerobic, aerobic, settling and draw phases. The experimental work lasted 445 days. Biological phosphate removal was achieved with sludge ages from 6 to 23 days. The highest PO4-P removal rate observed was of 98% and corresponds to a 16-day sludge age; phosphate removal increased with the sludge age. A sludge age of 3 days resulted in a chemical oxygen demand (COD) removal rate of 81% and a sludge age of 23 days in a removal rate of 99%. Full nitrification was observed with a sludge age of 16 days. Nitrification increased with the sludge age. The 3-day sludge age did not allow nitrification. The phosphate concentrations in the biomass were inversely proportional to the sludge age. 相似文献
18.
Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor 总被引:8,自引:0,他引:8
A laboratory-scale sequencing batch reactor was started-up with flocculated biomass and operated primarily for enhanced biological phosphate removal. Ten weeks after the start-up, gradual formation of granular sludge was observed. The compact biomass structure allowed halving the settling time, the initial reactor volume, and doubling the influent COD concentration. Continued operation confirmed the possibility of maintaining a stable granular biomass with a sludge volume index less than 40 ml g–1, while securing a removal efficiency of 95% for carbon, 99.6% for phosphate, and 71% for nitrogen. Microscopic observations revealed a morphological diversity. 相似文献
19.
A physiological study of a nitrifying sludge was carried out in a sequencing batch reactor (SBR). Pseudo steady-state nitrification conditions were obtained with an ammonium removal efficiency of 99% +/- 1% and 98% +/- 2% conversion of NH4+-N to NO3 - -N. The rate of biomass production was negligible (1.3 +/- 0.1 mg microbial protein-N.L(-1).d(-1)). The sludge presented good settling properties with sludge volume index values lower than 20 mL.g(-1) and an exopolymeric protein/carbohydrate ratio of 0.53 +/- 0.34. Kinetic results indicated that the nitrifying behavior of the sludge changed with the number of cycles. After 22 cycles, a decrease in the specific rate of NO3- -N production coupled with an increase in the NO2- -N accumulation were observed. These results showed that the activity of the nitrite oxidizing bacteria decreased at a longer operation time. Ammonia oxidizing bacteria were found to exhibit the best stability. After 4 months of operation, the specific rates of NH4+-N consumption and NO3- -N production were 1.72 NH4+-N per microbial protein-N per hour (g.g(-1).h(-1)) and 0.54 NO3- -N per microbial protein-N per hour (g.g(-1).h(-1)), respectively. 相似文献
20.
To improve phosphorus removal from wastewater, we constructed a high-phosphate-accumulating microorganism, KTPPK, using Pseudomonas putida KT2440 as a host. The expression plasmid was constructed by inserting and expressing polyphosphate kinase gene (ppk) from Microcystis aeruginosa NIES-843 into broad-host-range plasmid, pBBR1MCS-2. KTPPK was then added to a sequencing batch biofilm reactor (SBBFR) using lava as a biological carrier. The results showed that SBBFR with KTPPK not only efficiently removed COD, NH(3)-N, and NO(3)(-)-N but also had a high removal capacity for PO(4)(3-)-P, resulting in a low phosphorus concentration remaining in the outflow of the SBBFR. The biofilm increased by 30-53% on the lava in the SBBFR that contained KTPPK after 11 days when compared with the reactor that contained P. putida KT2440. Real-time quantitative polymerase chain reaction confirmed that the copy of ppk was maintained at about 3.5 × 10(10) copies per μL general DNA in the biofilm after 20 days. Thus, the transgenic bacteria KTPPK could maintain a high density and promote phosphorus removal in the SBBFR. In summary, this study indicates that the use of SBBFR with transgenic bacteria has the potential to remove phosphorus and nitrogen from wastewater. 相似文献