首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ezrin-radixin-moesin (ERM) proteins are involved in the linkage of membranes to theactin filament (F-actin) cytoskeleton. Phosphorylation of the C-terminus activates the F-actin binding domain of ERM proteins by preventing the action of an autoinhibitory domain. In this study, we investigated whether a growth cone collapsing signal, semaphorin 3A (Sema3A), alters the state of ERM C-terminus phosphorylation. In the growth cones of dorsal root ganglion axons, phosphorylated ERM proteins localize to filopodia. We report that Sema3A inhibits ERM protein phosphorylation in growth cone filopodia. Significantly, Sema3A decreased ERM phosphorylation prior to the onset of growth cone collapse. Over-expression of the F-actin binding fragment of ERM proteins, which competes with endogenous ERM proteins for binding to F-actin, inhibited filopodial initiation and dynamics. Sema3A has been previously shown to inhibit phosphoinositide 3-kinase (PI3K) activity. Inhibition of PI3K resulted in the loss of phosphorylated ERM proteins from growth cone filopodia, and treatment with a PI3K activating peptide blocked the effects of Sema3A on ERM phosphorylation. Collectively, these observations demonstrate that inactivation of PI3K in response to Sema3A results in decreased phosphorylation of ERM proteins in filopodia thereby contributing to growth cone collapse.  相似文献   

2.
Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase that has been implicated in several aspects in embryonic development and several growth factor signaling cascades. We now report that an inactive phosphorylated pool of the enzyme colocalizes with F-actin in both neuronal and nonneuronal cells. Semaphorin 3A (Sema 3A), a molecule that inhibits axonal growth, activates GSK-3 at the leading edge of neuronal growth cones and in Sema 3A-responsive human breast cancer cells, suggesting that GSK-3 activity might play a role in coupling Sema 3A signaling to changes in cell motility. We show that three different GSK-3 antagonists (LiCl, SB-216763, and SB-415286) can inhibit the growth cone collapse response induced by Sema 3A. These studies reveal a novel compartmentalization of inactive GSK-3 in cells and demonstrate for the first time a requirement for GSK-3 activity in the Sema 3A signal transduction pathway.  相似文献   

3.
Brain derived neurotrophic factor (BDNF) when added to explant cultures of both embryonic and adult retinal ganglion cell (RGC) axons exerted a marked effect on their growth cone size and complexity and also on the intensity of GAP-43, ß-III tubulin and F-actin immunoreaction product in their axons. GAP-43 was distributed in axons, lamellipodia, and filopodia whereas ß-III tubulin was distributed along the length of developing and adult regenerating axons and also in the C-domain of their growth cones. BDNF-treated developing RGC growth cones were larger and displayed increased numbers of GAP-43 and microtubule-containing branches. Although filopodia and lamellipodia were lost from both developing and adult RGC growth cones following trkB-IgG treatment, the intensity of the immunoreaction product of all these molecules was reduced and trkB-IgGs had no effect on the axonal distribution of ß-III tubulin and GAP-43. BDNF-treated growth cones also displayed increased numbers of F-actin containing filopodia and axonal protrusions. This study demonstrates, for the first time, that trkB-IgG treatment causes the loss of F-actin in the P-domain of growth cone tips in developing and regenerating RGC axons. Although microtubules and F-actin domains normally remained distinct in cultured growth cones, ß-III tubulin and F-actin overlapped within the growth cone C-domain, and within axonal protrusions of adult RGC axons, under higher concentrations of BDNF. The collapse of RGC growth cones appeared to correlate with the loss of F-actin. In vitro, trkB signalling may therefore be involved in the maintenance and stabilisation of RGC axons, by influencing F-actin polymerisation, stabilisation and distribution.  相似文献   

4.
The repellent semaphorin 3A (Sema3A) causes growth cone turning or collapse by triggering cytoskeletal rearrangements and detachment of adhesion sites. Growth cone detachment is dependent on eicosanoid activation of protein kinase C epsilon (PKCε), but the characterization of the phospholipase A(2) (PLA(2) ) that releases arachidonic acid (AA) for eicosanoid synthesis has remained elusive. Here, we show, in rat dorsal root ganglion (DRG) neurons, that Sema3A stimulates PLA(2) activity, that Sema3A-induced growth cone turning and collapse are dependent on the release of AA, and that the primary PLA(2) involved is the group IV α isoform (GIVA). Silencing GIVA expression renders growth cones resistant to Sema3A-induced collapse, and GIVA inhibition reverses Sema3A-induced repulsion into attraction. These studies identify a novel, early step in Sema3A-signaling and a PLA(2) necessary for growth cone repulsion and collapse.  相似文献   

5.

Background

During nerve growth, cytoplasmic vesicles add new membrane preferentially to the growth cone located at the distal tip of extending axons. Growth cone membrane is also retrieved locally, and asymmetric retrieval facilitates membrane remodeling during growth cone repulsion by a chemorepellent gradient. Moreover, growth inhibitory factors can stimulate bulk membrane retrieval and induce growth cone collapse. Despite these functional insights, the processes mediating local membrane remodeling during axon extension remain poorly defined.

Results

To investigate the spatial and temporal dynamics of membrane retrieval in actively extending growth cones, we have used a transient labeling and optical recording method that can resolve single vesicle events. Live-cell confocal imaging revealed rapid membrane retrieval by distinct endocytic modes based on spatial distribution in Xenopus spinal neuron growth cones. These modes include endocytic "hot-spots" triggered at the base of filopodia, at the lateral margins of lamellipodia, and along dorsal ridges of the growth cone. Additionally, waves of endocytosis were induced when individual filopodia detached from the substrate and fused with the growth cone dorsal surface or with other filopodia. Vesicle formation at sites of membrane remodeling by self-contact required F-actin polymerization. Moreover, bulk membrane retrieval by macroendocytosis correlated positively with the substrate-dependent rate of axon extension and required the function of Rho-family GTPases.

Conclusions

This study provides insight into the dynamic membrane remodeling processes essential for nerve growth by identifying several distinct modes of rapid membrane retrieval in the growth cone during axon extension. We found that endocytic membrane retrieval is intensified at specific subdomains and may drive the dynamic membrane ruffling and re-absorption of filopodia and lamellipodia in actively extending growth cones. The findings offer a platform for determining the molecular mechanisms of distinct endocytic processes that may remodel the surface distribution of receptors, ion channels and other membrane-associated proteins locally to drive growth cone extension and chemotactic guidance.  相似文献   

6.
Semaphorin 3E/collapsin-5 inhibits growing retinal axons   总被引:2,自引:0,他引:2  
During development, the formation of neural networks is reflected by the oriented extension of neurites. Using retinal ganglion cells (RGCs) as a model, we identified the yet uncharacterized chick semaphorin Sema3E/collapsin-5 as a repulsive cue for outgrowing axons. Sema3E/collapsin-5 was highly regulated during retinal histogenesis, with peak expression during the period of intraretinal axon growth. Polymerase chain reaction analysis demonstrated Sema3E/collapsin-5 mRNA in retina layers, from which RGC axons are excluded. Neither isolated RGCs nor purified retinal Müller glia cells synthesized Sema3E/collapsin-5. Sema3E/collapsin-5 receptor sites were visualized by alkaline phosphatase fusion proteins in the axon-rich optic fiber layer. Time-lapse video recording of chick in vitro cultures revealed a growth cone collapsing activity of recombinant Sema3E/collapsin-5. This effect was specific for RGCs, since dorsal root ganglia (DRG) neurons of the peripheral nervous system were not affected. Comparison with Sema3A/collapsin-1 displayed a reciprocal specificity, because Sema3A/collapsin-1 hampered exclusively DRG but not RGC growth cones. The collapsing effect was mediated by low cGMP levels, but not cAMP, as revealed by a set of agonists. In summary, the data suggest a possible role of chick Sema3E/collapsin-5 in restricting growth of retinal ganglion cell axons to the optic fiber layer.  相似文献   

7.
The optic chiasm is an important choice point at which retinal ganglion cell (RGC) axons either cross the midline to innervate the contralateral brain or turn back to innervate the ipsilateral brain. Guidance cues that regulate this decision, particularly those directing the midline crossing of contralateral axons, are still not well understood. Here we show that Sema3d, a secreted semaphorin expressed at the midline, guides the crossing of RGC axons in zebrafish. Both Sema3d knockdown and ubiquitous overexpression induced aberrant ipsilateral projections, suggesting that Sema3d normally guides axons into the contralateral optic tract. Live imaging in vivo showed that RGC growth cones responded to ubiquitous Sema3d overexpression by pausing for extended periods and increasing their exploratory behavior at the midline, suggesting that Sema3d overexpression causes the midline environment to become less favorable for RGC axon extension. Interestingly, Sema3d overexpression did not affect growth cone behaviors before the midline, suggesting that RGC axons normally respond to Sema3d only upon reaching the midline. After Sema3d knockdown, growth cones grew across the midline but then paused or repeatedly retracted, impairing their ability to leave the midline region. Our results indicate that a proper balance of Sema3d is needed at the midline for the progression of RGC axons from the chiasm midline into the contralateral optic tract.  相似文献   

8.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

9.
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.  相似文献   

10.
Among the earliest invariant neuropathological changes in Alzheimer's disease (AD) is the degeneration of vulnerable hippocampal CA1 and subicular pyramidal neurons. Semaphorin 3A (Sema3A) is a secreted protein that functions in signaling growth cone collapse, chemorepulsion and neuronal apoptosis during early development of the central nervous system. In this report we show that accumulation of an internalized form of Sema3A is associated with degeneration of neurons in vulnerable fields of the hippocampus during AD. Accumulation of Sema3A overlaps the appearance of phosphorylated MAP1B and tau in many neurons, suggesting that Sema3A signaling at some level may be coupled to these previously identified cytoskeletal markers of neurodegeneration. Consistent with this, we isolated and partially characterized a multiprotein complex from the hippocampus of patients with AD that contains phosphorylated MAP1B, collapsin-response mediator protein 2 (CRMP-2), Plexins A1 and A2, and a processed form of Sema3A. A model is presented in which aberrant release of Sema3A from expressing neurons in the subiculum during AD results in the internalization and transport of Sema3A from this field to CA1. Within the context of the myriad of potential insults that contribute to Alzheimer's and other neurodegenerative diseases, the bioactivity of Sema3A may contribute either directly to neurodegeneration by inducing neuronal collapse, or indirectly by abrogating the recovery capabilities of adult neurons faced with these insults.  相似文献   

11.
Molecular basis of semaphorin-mediated axon guidance   总被引:10,自引:0,他引:10  
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.  相似文献   

12.
Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.  相似文献   

13.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small-caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large-muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin-1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)- and NT3 (proprioceptive)-dependent sensory axons extended from E6-E10 chick embryos. Growth cones extended from E6 DRGs in NT3-containing medium expressed neuropilin-1 and collapsed in response to Sema3A. From E7 until E10 NT3-responsive growth cones expressed progressively lower levels of neuropilin-1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF-containing medium expressed progressively higher levels of neuropilin-1 and higher levels of collapse response to Sema3A over the period from E6-E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin-1.  相似文献   

14.
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.  相似文献   

15.
16.
Plexins are receptors for axonal guidance molecules semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin-B1, suppresses PI3K signaling through the R-Ras GTPase-activating protein (GAP) activity, inducing growth cone collapse. Phosphatidylinositol 3-phosphate level is critically regulated by PI3K and PTEN (phosphatase and tensin homologue deleted chromosome ten). Here we examined the involvement of PTEN in the Plexin-B1-induced repulsive response. Phosphorylation of PTEN at Ser-380 is known to suppress its phosphatase activity. Sema4D induced the dephosphorylation of PTEN at Ser-380 and stimulated PTEN phosphatase activity in hippocampal neurons. Knockdown of endogenous PTEN suppressed the Sema4D-induced growth cone collapse. Phosphorylation mimic PTEN mutant suppressed the Sema4D-induced growth cone collapse, whereas phosphorylation-resistant PTEN mutant by itself induced growth cone collapse. Plexin-B1-induced PTEN dephosphorylation through R-Ras GAP activity and R-Ras GAP activity was by itself sufficient for PTEN dephosphorylation and activation. We also suggested that the Sema4D-induced PTEN dephosphorylation and growth cone collapse were mediated by the inhibition of casein kinase 2 α activity. Thus, we propose that Sema4D/Plexin-B1 promotes the dephosphorylation and activation of PTEN through the R-Ras GAP activity, inducing growth cone collapse.  相似文献   

17.
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.  相似文献   

18.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small‐caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large‐muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin‐1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)‐ and NT3 (proprioceptive)‐dependent sensory axons extended from E6‐E10 chick embryos. Growth cones extended from E6 DRGs in NT3‐containing medium expressed neuropilin‐1 and collapsed in response to Sema3A. From E7 until E10 NT3‐responsive growth cones expressed progressively lower levels of neuropilin‐1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF‐containing medium expressed progressively higher levels of neuropilin‐1 and higher levels of collapse response to Sema3A over the period from E6–E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin‐1. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 43–53, 2002  相似文献   

19.
VEGF promotes vascular sympathetic innervation   总被引:1,自引:0,他引:1  
The sympathetic nervous system, via postganglionic innervation of blood vessels and the heart, is an important determinant of cardiovascular function. The mechanisms underlying sympathetic innervation of targets are not fully understood. This study tests the hypothesis that target-derived vascular endothelial growth factor (VEGF) promotes sympathetic innervation of blood vessels. Western blot and immunohistochemical analyses indicate that VEGF is produced by vascular cells in arteries and that VEGF receptors are expressed on sympathetic nerve fibers innervating arteries. In vitro, exogenously added VEGF and VEGF produced by vascular smooth muscle cells (VSMCs) in sympathetic neurovascular cocultures inhibited semaphorin 3A (Sema3A)-induced collapse of sympathetic growth cones. In the absence of Sema3A, VEGF and VSMCs also increased growth cone area. These effects were mediated via VEGF receptor 1. In vivo, the neutralization of VEGF inhibited the reinnervation of denervated femoral arteries. These data demonstrate that target-derived VEGF plays a previously unrecognized role in promoting the growth of sympathetic axons.  相似文献   

20.
Semaphorin-4D (Sema4D), a member of class 4 membrane-bound Semaphorins, acts as a chemorepellant to the axons of retinal ganglion cells and hippocampal neurons. Plexin-B1, a neuronal Sema4D receptor, associates with either one of receptor tyrosine kinases, c-Met or ErbB2, to mediate Sema4D-signaling. In contrast to this significance, the involvement of protein tyrosine phosphatases in Semaphorin-signaling remains unknown. We here show that Src homology 2-containing protein-tyrosine phosphatase 2 (SHP2) participates in Sema4D-signaling. SHP2 was localized in the growth cones of chick embryonic retinal ganglion neurons. Phenylarsine oxide, a protein tyrosine phosphatase inhibitor, suppressed Sema4D-induced contractile response in COS-7 cells expressing Plexin-B1. Ectopic expression of a phosphatase-inactive mutant of SHP2 in the retinal ganglion cells attenuated Sema4D-induced growth cone collapse response. A SHP1/2 specific inhibitor, 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), also suppressed this collapse response. These results suggest that SHP2-mediated tyrosine dephosphorylation is an important step in Sema4D-induced axon repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号