首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Process Biochemistry》2010,45(10):1672-1676
Reverse phase-high pressure liquid chromatography (RP-HPLC) with an acetonitrile–water mixture as the eluent is widely used for purification of proteins. The separation of acetonitrile (ACN) in RP-HPLC eluent is important for protein recovery. Cooling below subzero temperature and salting out have been used to remove ACN, each with its limitations. In this work we have explored the use of sugaring-out, a new phase separation method developed at University of Illinois for the separation of ACN from a simulated preparative RP-HPLC effluent. The effect of glucose concentration, temperature, and initial amount of ACN in the effluent on phase separation was investigated. Results showed that a good phase separation can be achieved at near room temperature (18 °C). With the optimized conditions, we found that more than 60% (w/w) of ACN was removed and more than 95% (w/w) of water-soluble proteins (bovine serum albumin, trypsin, and pepsin) were recovered.  相似文献   

3.
Prediction of protein retention in hydrophobic interaction chromatography   总被引:2,自引:0,他引:2  
Hydrophobic interaction chromatography (HIC) is a powerful technique for protein separation. This review examines methodologies for predicting protein retention time in HIC involving elution with salt gradients. The methodologies discussed consider three-dimensional structure data of the protein and its surface hydrophobicity. Despite their limitations, the methods discussed are useful in designing purification processes for proteins and easing the tedious experimental work that is currently required for developing purification protocols.  相似文献   

4.
取8周龄羊草的地上部分,用三氯乙酸-丙酮法沉淀总蛋白,沉淀裂解后将缓冲液置换为起始缓冲液,进行第一维色谱聚焦分离。将第一维分离收集的pH值为8.5至4.0之间的组分分别进行第二维无孔硅胶反相高效液相色谱分离,利用ProteoVue软件获得羊草植株总蛋白pI/UV图谱,即羊草植株总蛋白质表达谱。文中对二维液相色谱法分离羊草蛋白质进行了方法学的研究,在第二维分离中尝试用3种不同的洗脱梯度条件进行分离,优化二维液相色谱分离条件并与传统凝胶双向电泳进行了比较,另外还对二维液相色谱的重现性和准确性进行了检验。实验建立了利用二维液相色谱分离羊草总蛋白的技术方法。  相似文献   

5.
以肠道病毒71型及其宿主细胞为研究主体,建立了一种二维液相色谱分离和分析比较病毒感染前后细胞蛋白表达谱的方法。该方法以高效液相色谱(HPLC)为技术平台,对细胞裂解物先后进行一维色谱聚焦分离和二维反相色谱分离。利用ProteoVue软件将二维色谱数据转换成模拟胶图,再利用DeltaVue软件对感染前后的宿主蛋白表达谱进行比较和分析,找出差异蛋白。二维液相色谱分离法能够根据蛋白的等电点和疏水性建立精确的细胞蛋白表达图谱,每0.2个pH为一个收集区段,在pH8.5~3.9的范围内可见蛋白条带约1200条。该方法良好的重现性、自动化以及结果分析的简易化,使之在细胞表达谱差异显示中的应用潜力巨大,并且为研究病毒与宿主相互作用提供了新的方法和思路。  相似文献   

6.
基于等电聚焦-反相HPLC的虎纹捕鸟蛛毒素组学的初步研究   总被引:2,自引:0,他引:2  
虎纹捕鸟蛛(Ornithoctonus huwena)是中国最毒的蜘蛛之一.已有研究表明,其粗毒中含有丰富的低分子量(<10 kD)多肽活性成分.为分析这些成分, 利用目标蛋白快速分离系统(ProteomeLab PF 2D)建立了一种新的二维液相色谱分离方法.该方法包括一维的基于蛋白质等电点(pI)的色谱聚焦分离和二维利用无孔硅胶反相柱的基于疏水性的高效液相色谱分离.得到的反相图谱通过仪器配套的ProteoVue软件转换成与凝胶电泳图像相似的pI/UV图,以更直观地显示多肽成分的数量、分布规律及相对丰度等.洗脱的多肽自动收集后用基质辅助激光解吸电离-飞行时间质谱进行分析.从一维分离的11个馏分(pH 4.53-8.59)中共检测到大约600个多肽条带.通过质谱分析测得130个多肽的精确分子量,同时通过De novo测序得到26种多肽(其中包括12种已知多肽)的部分序列信息,并利用这些序列信息对未知多肽进行了生物信息学分析.  相似文献   

7.
For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. The identification of molecules whose expression is specifically correlated with the metastatic spread of cancer would facilitate the design of therapeutic interventions to inhibit this lethal process. In order to facilitate metastasis gene discovery we have previously characterized a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. In this study, serum-free conditioned media was collected from the cultured monoclonal cell lines and a mass mapping technique was applied in order to profile a component of each cell line proteome. We utilized chromatofocusing in the first dimension to obtain a high resolution separation based on protein pI, and nonporous silica reverse-phase high performance liquid chromatography was used for the second dimension. Selected proteins were identified on the basis of electrospray ionization time of flight mass spectrometry (ESI-TOF MS) intact protein mapping and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting. Using this approach we were able to map over 400 proteins and plot them as a 2-D map of pI versus accurate M(r). This was performed over a pI range of 4.0-6.2, and a mass range of 6-80 kDa. ESI-TOF MS data and further analysis using MALDI-TOF MS confirmed and identified 27 differentially expressed proteins. Proteins associated with the metastatic phenotype included osteopontin and extracellular matrix protein 1, whereas the matrix metalloproteinase-1 and annexin 1 proteins were associated with the non-metastatic phenotype. These findings demonstrate that the mass mapping technique is a powerful tool for the detection and identification of proteins in complex biological samples and which are specifically associated with a cellular phenotype.  相似文献   

8.
This paper presents a multidimensional profile of the human serum proteome, produced by a two-dimensional protein fractionation system based on liquid chromatography followed by characterization with capillary electrophoresis (CE). The first-dimension separation was done by chromatofocusing over a pH range from 8.5 to 4.0, where proteins were separated by their isoelectric points (pI). In this dimension, fractions were collected based on pH. The first-dimension pI fractions were then resolved in the second dimension by high-resolution, reversed-phase chromatography with a gradient of trifluoroacetic acid (TFA) in acetonitrile and TFA in water. A selected protein fraction collected from the second dimension by time was characterized by CE for molecular-weight estimation and for presence of isoforms. Molecular-weight estimation was done by sodium dodecyl sulfate capillary gel electrophoresis, where proteins were separated in the range of 10,000-225,000 Da. Detection of isoforms was done by capillary isoelectric focusing over a pH range of 3-10. A selected second-dimension fraction that contained the putative serum iron-binding protein transferrin was analyzed by these two CE techniques for molecular-weight determination and the presence of isoforms. The combination of two-dimensional protein fractionation and CE characterization represents an advanced tool for proteomics.  相似文献   

9.
Knowledge of host protein properties is critical for developing purification methods for recombinant proteins from a specific host, or for choosing suitable hosts and targeted expression tissues for a specific recombinant protein. A method to obtain a three-dimensional (3D) map (surface hydrophobicity (SH), isoelectric point (pI), and molecular weight (MW)), of a host's aqueous soluble protein properties was developed. The method consists of hydrophobic partitioning in a PEG 3350 (15.7%)-Na(2)SO(4) (8.9%)-NaCl (3%) aqueous two-phase (ATP) system followed by quantitative, 2D-electrophoretic characterization of the proteins of each equilibrium phase and the original extract. The pI and MW of host proteins were obtained directly through 2D electrophoresis. The partition coefficients of individual proteins were obtained by quantitative matching of protein spots in the top and bottom phase gels and calculating the protein partition coefficients from this information. Correlation of the partition coefficient to a SH scale was established by partitioning several model proteins with known surface hydrophobicities in the same ATP system. The inclusion of the extract gel provided for a spot selection criterion based on satisfactory mass balance closure. The method is illustrated by application to a mixture of model proteins and to complex mixtures, that is, corn germ proteins extracted at pH 7 and pH 4.  相似文献   

10.
Microheterogeneity within the high mobility group (HMG)-1 and HMG-2 groups of nonhistone chromatin proteins has been investigated using reverse-phase high-performance liquid chromatography (RP-HPLC) under conditions (acetonitrile elution with 0.1% trifluoroacetic acid (TFA) as the counter ion) which separate proteins primarily on the basis of differences in their overall hydrophobicity. RP-HPLC proved to be a fast and efficient means for separating multiple subspecies of both the HMG-1 and HMG-2 proteins from both crude nuclear extracts and from ion-exchange column "purified" protein samples obtained from different types of mammalian cell nuclei. In crude nuclear extracts at least eight different HMG-2 protein species (two major and six minor), but only one major HMG-1 species, could be resolved by RP-HPLC. Three of the minor HMG-2 protein species could be isolated in "pure" form from crude extracts in one RP-HPLC step whereas under the same conditions the two major HMG-2 peaks (as well as the other minor species) were contaminated with either HMG-1 or HMG-3 (a degradation product of HMG-1). In crude extracts the major HMG-1 fraction always seems to be contaminated with one of the HMG-2 subfractions. RP-HPLC analysis of apparently "pure" protein preparations isolated by ion-exchange chromatography techniques revealed that "pure" HMG-1 can be resolved into at least three different protein species and "pure" HMG-2 into at least four different species. Amino acid analyses of different resolvable forms of the HMG proteins were not inconsistent with the suggestion that at least some of these may be primary sequence variants of the individual proteins, but other possibilities also exist.  相似文献   

11.
Purification of mouse interleukin 2 to apparent homogeneity   总被引:3,自引:0,他引:3  
A procedure has been developed for the rapid purification of mouse interleukin 2 (IL2) to apparent homogeneity, using gel filtration, anion exchange, hydrophobic chromatography, and reverse phase high pressure liquid chromatography (RP-HPLC). IL2 eluted at a high concentration of acetonitrile on HPLC (approximately 40%), well removed from other proteins. This protocol did not resolve isoelectric variant forms of IL2. Both the biological activity and protein migrated as a band of apparent molecular weight 22,000-23,000 on SDS-polyacrylamide gel electrophoresis. It had a high potency, producing 30% of the maximal response in T cell growth at a concentration of 2-4 X 10(-12) M. Mouse Il2 synthesized in a wheat germ cell-free translation system behaved similarly on RP-HPLC as the form secreted by EL4 cells. Thus, the hydrophobicity of mouse IL2, which facilitates its purification, is an intrinsic property of the protein, determined primarily by its amino acid sequence.  相似文献   

12.
In this study, a new 3D native electrophoretic protocol is proposed for an exhaustive separation and identification of membrane proteins. It is based on native liquid phase isoelectrofocusing (N-LP-IEF) of protein complexes in the first dimension, followed by blue native polyacrylamide gel electrophoresis (BN-PAGE) in the second dimension, where both the pI and the molecular masses of protein complexes (2D N-LP-IEF-BN) were used to separate them in their native form. Finally, each single component can be resolved using denaturing electrophoresis (3D N-LP-IEF-BN-SDS-PAGE). The thylakoid membrane of spinach which contains four big protein complexes was chosen as a model for setting up analytical methods suitable for any membrane proteins. The pI-based MicroRotofor has a number of advantages over BN-PAGE: it does not require the addition of any chemicals, and separation of complexes is based on the protein's real physicochemical properties which inevitably change when dye is added. Results were more easily reproduced than with BN, and the pI of each native complex was also determined. Although some fractions still contained comigrating complexes after MicroRotofor, these were subsequently separated by BN for further analysis. Thus, highly hydrophobic complexes, such as ATP-synthetas and Cyt b6/f, were separated in native form as were various complexes of LHCII trimers, which have different pI but similar molecular masses. SDS-PAGE revealed almost all the subunits from the four photosynthetic complexes, indicating that by using 3D N-LP-IEF-BN-SDS-PAGE it is possible to achieve a greater degree of component identification than with 2D BN-SDS-PAGE.  相似文献   

13.
In biomarker discovery, the detection of proteins with low abundance in the serum proteome can be achieved by optimization of protein separation methods as well as selective depletion of the higher abundance proteins such as immunoglobins (e.g. IgG) and albumin. A relative newcomer to the proteomic separation arena is the commercial instrument PF2D from Beckman Coulter that separates proteins in the first dimension using chromatofocusing followed in line by reversed phase chromatography in the second dimension, thereby separating intact proteins based on pI and hydrophobicity. In this study, assessment and optimization of serum separation (undepleted serum and albumin-IgG-depleted serum) by the PF2D is presented. Protein databases were created for serum obtained from a healthy individual under traditional and optimized methods and under different sample preparation protocols. Separation of the doubly depleted serum using the PF2D with 20% isopropanol present in the first dimension running buffer allowed us to unambiguously identify 150 non-redundant serum proteins (excluding all immunoglobulin and albumin, a minimum of two peptide matches with acceptable Mascot score) in which 81 have not been identified previously in serum. Among them, numerous cellular proteins were identified to be specifically the skeletal muscle isoform, such as skeletal muscle fast twitch isoforms of troponin T, myosin alkali light chain 1, and sarcoplasmic/endoplasmic reticulum calcium ATPase. The detection of specific skeletal muscle protein isoforms in the serum from healthy individuals reflects the physiological turnover that occurs in skeletal muscle, which will have an impact on the ability to use generic "cellular" proteins as biomarkers without further characterization of the precise isoforms or post-translational modifications present.  相似文献   

14.
We performed a three-dimensional separation of pulse-chase dual-labelled rat liver cytosolic proteins using hydrophobic interaction chromatography, isoelectric focusing, and SDS gel electrophoresis. Due to very different expression rates but similar size and pI of rat liver cytosolic proteins, we demonstrate the impossibility of successful two-dimensional separations of such complex protein mixtures. A pre-fractionation of proteins by hydrophobic interaction chromatography is therefore recommended prior to two-dimensional gel electrophoresis. Our studies confirmed the correlation between protein turnover rates and surface hydrophobicity.  相似文献   

15.
A two-dimensional liquid mapping method was used to map the protein expression of eight ovarian serous carcinoma cell lines and three immortalized ovarian surface epithelial cell lines. Maps were produced using pI as the separation parameter in the first dimension and hydrophobicity based upon reversed-phase HPLC separation in the second dimension. The method can be reproducibly used to produce protein expression maps over a pH range from 4.0 to 8.5. A dynamic programming method was used to correct for minor shifts in peaks during the HPLC gradient between sample runs. The resulting corrected maps can then be compared using hierarchical clustering to produce dendrograms indicating the relationship between different cell lines. It was found that several of the ovarian surface epithelial cell lines clustered together, whereas specific groups of serous carcinoma cell lines clustered with each other. Although there is limited information on the current biology of these cell lines, it was shown that the protein expression of certain cell lines is closely related to each other. Other cell lines, including one ovarian clear cell carcinoma cell line, two endometrioid carcinoma cell lines, and three breast epithelial cell lines, were also mapped for comparison to show that their protein profiles cluster differently than the serous samples and to study how they cluster relative to each other. In addition, comparisons can be made between proteins differentially expressed between cell lines that may serve as markers of ovarian serous carcinomas. The automation of the method allows reproducible comparison of many samples, and the use of differential analysis limits the number of proteins that might require further analysis by mass spectrometry techniques.  相似文献   

16.
Two dimensional high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (2D-HPLC-ESI-MS/MS) is one of the most powerful techniques for high resolution, efficiency, and throughput separation and identification of proteomes. For a bottom-up strategy-based proteome analysis, usually multistep salt elution was needed in the first dimension separation by SCX, to simplify the peptides for the further second dimensional separation by RPLC. Here, by using a 30 cm-long serially coupled long column (SCLC) in the second dimension, we reduced the salt steps of SCX from 13 to 5 to shorten the total analysis time. Compared to the commonly applied 2D-HPLC with over 10-step salt elution in SCX and microRPLC with a short column (SC), named as SC-2D, the peak capacity of 2D-HPLC with a SCLC column, named as SCLC-2D, was increased 3.3-folds while the analysis time was increased by only 1.17-folds. Therefore, the time-based protein identification efficiency was ~55 protein groups/h, nearly 2-fold of that for SC-2D (~28 protein groups/h). With the further combination of assisted solubilization by ionic liquids and SCLC-2D, 608 integral membrane proteins (IMPs) (27.66% of the total 2198 proteins, FDR < 1%) were identified from rat brain, more than those obtained by the traditional urea method (252 unique IMPs, occupying 17.03% of total 1480 proteins). All of these results demonstrate the promise of the developed technique for large-scale proteome analysis.  相似文献   

17.
Microheterogeneity within the HMG-14 and HMG-17 group of nonhistone chromatin proteins has been investigated using reverse-phase high-performance liquid chromatography (RP-HPLC) under conditions (acetonitrile elution with 0.1% trifluoroacetic acid as a weak ion-pairing agent) which separate proteins primarily on the basis of differences in their overall hydrophobicities. Ion-pair RP-HPLC proves to be a fast and efficient means for separating multiple subspecies of both the HMG-14 and the -17 proteins from both crude nuclear extracts and from ion-exchange column-purified protein samples obtained from different types of mammalian cell nuclei. In crude nuclear extracts at least two different HMG-14 protein species (one major and one minor) and three different HMG-17 species (two major and one minor) can be resolved by ion-pair RP-HPLC. The identity and purity of these HMG-14 and -17 protein species were assayed by polyacrylamide gel electrophoresis and amino acid analysis. The amount of HMG protein microheterogeneity observed by RP-HPLC equals or exceeds that found for these proteins by other analytical techniques and the results suggest that this heterogeneity may be due to factors other than protein size or overall net charge variability.  相似文献   

18.
The heterogeneity of cellular protein expression has stimulated development of separations targeting smaller groups of related proteins rather than entire proteomes. The following work describes the development of a technique for the characterization of membrane subproteomes from five different breast epithelial cell lines. Intact membrane proteins are separated by hydrophobicity in the first dimension using nonporous reversed-phase high-performance liquid chromatography (RP-HPLC) to generate unique chromatographic profiles. Fractions of eluent are further separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to create distinct banding patterns. This hybrid liquid phase/gel phase method circumvents issues of membrane protein precipitation and provides a simple strategy aimed at isolating and characterizing a traditionally underrepresented protein class. Membrane protein profiles are created that discriminate between microsomal fractions of breast epithelial cells in different stages of neoplastic progression. Proteins are subsequently identified using matrix-assisted laser desorption/ionization - mass spectrometry (MALDI-MS) mass fingerprinting and MALDI-quadrupole time of flight - tandem mass spectrometry (QTOF-MS/MS) peptide sequencing. Furthermore, as this strategy preserves intact protein structure, further characterization can be performed on proteins producing mass fingerprint spectra and fragmentation spectra that did not result in database protein identifications. The coupling of nonporous RP-HPLC with SDS-PAGE provides a useful alternative to two-dimensional PAGE (2-D-PAGE) for membrane protein analysis.  相似文献   

19.
An RP-HPLC method for the determination of daidzein, genistein, formononetin and biochanin A in red clover (Trifolium pratense L.) was developed and validated. The compounds are quantified after hydrolytic extraction using an internal standard. On a base-deactivated C(18) column good separation of the analytes, also from accompanying substances, and excellent peak shape are achieved by gradient elution with aqueous sulfuric acid and acetonitrile. The method was applied to the analysis of different red clover cultivars.  相似文献   

20.
In this report, an on-line coupling of capillary isoelectric focusing (CIEF) to capillary electrochromatography (CEC) is developed via a nanoinjector valve for performing two-dimensional (2D) proteomics separation. CIEF constitutes the first separation dimension, while CEC operates as the second separation dimension. Besides the orthogonal migration mechanisms of the two capillary-based separation modes, which lead to a 2D system whose overall peak capacity is the product of the peak capacity of the individual modes, the solvent of the CIEF mode is a weak eluent for the reversed-phase CEC (RP-CEC) mode, thus, allowing the transferring of focused fractions from CIEF to CEC without inducing band broadening, and instead zone sharpening would result. In fact, the transferred focused protein fraction from the CIEF column to the CEC column will stay tightly adsorbed to the inlet top of the CEC column until it will be eluted and separated into its protein components with a hydro-organic mobile phase. The theoretical peak capacity of the CIEF-CEC 2D platform is estimated at n(CIEF) (= 560) x n(CEC) (= 97) = 54 320. This peak capacity is more than needed for proteomics profiling. Also, only a fraction of this peak capacity is needed when looking at heart cuts for performing subproteomics. The 2D platform described here offers the convenience to generate the needed peak capacity to solve a given proteomic separation problem. This is facilitated by the RP-CEC dimension, which ensures rapid isocratic separation of proteins and peptides and rapid solvent change and column equilibration and avoids lengthy gradient elution. The RP-CEC column is based on neutral C17 monolith, which offers high separation efficiency and relatively high column permeability. To the best of our knowledge, the proposed 2D platform combining CIEF and CEC is reported for the first time for proteins and proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号