首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.  相似文献   

2.
Hepatic mitochondria contain an inducible cytochrome P450, referred to as P450 MT5, which cross-reacts with antibodies to microsomal cytochrome P450 2E1. In the present study, we purified, partially sequenced, and determined enzymatic properties of the rat liver mitochondrial form. The mitochondrial cytochrome P450 2E1 was purified from pyrazole-induced rat livers using a combination of hydrophobic and ion-exchange chromatography. Mass spectrometry analysis of tryptic fragments of the purified protein further ascertained its identity. N-terminal sequencing of the purified protein showed that its N terminus is identical to that of the microsomal cytochrome P450 2E1. In reconstitution experiments, the mitochondrial cytochrome P450 2E1 displayed the same catalytic activity as the microsomal counterpart, although the activity of the mitochondrial enzyme was supported exclusively by adrenodoxin and adrenodoxin reductase. Mass spectrometry analysis of tryptic fragments and also immunoblot analysis of proteins with anti-serine phosphate antibody demonstrated that the mitochondrial cytochrome P450 2E1 is phosphorylated at a higher level compared with the microsomal counterpart. A different conformational state of the mitochondrial targeted cytochrome P450 2E1 (P450 MT5) is likely to be responsible for its observed preference for adrenodoxin and adrenodoxin reductase electron transfer proteins.  相似文献   

3.
Calpains, calcium-dependent neutral cystein proteases, are involved in a variety of cellular processes. We have previously shown the characteristics of mitochondrial mu-calpain even though calpastatin, a specific endogenous inhibitor of cytosolic calpains, was not present in the mitochondria. This suggested that the regulatory system of mitochondrial calpains differs from that of cytosolic calpains, and endogenous regulatory molecule(s) must exist in the mitochondria. In this study, we have identified ERp57 in partially purified mitochondrial mu-calpain using peptide mass fingerprinting based on MALDI-TOFMS. ERp57 is a member of the protein-disulfide isomerase (PDI) family and functions as a molecular chaperone within the ER. We showed that ERp57 was present in the mitochondria and was associated with mitochondrial mu-calpain. PDI inhibitors, such as DTNB and PAO, caused a degradation of the mitochondrial mu-calpain large subunit. The release of apoptosis-inducing factor (AIF) from the mitochondrial inner membrane was inhibited by treatment of the isolated mitochondria with DTNB and immunoprecipitation of ERp57-associated mitochondrial mu-calpain. Mitochondrial mu-calpain band in casein zymography disappeared by treatment with anti-ERp57 antibody. Our results demonstrate that ERp57 forms complexes with mitochondrial mu-calpain, and ERp57-associated mitochondrial mu-calpain cleaves AIF to a truncated form.  相似文献   

4.
P5, one of the protein disulphide isomerase (PDI) family members, catalyses disulphide bond formation in proteins and exhibits molecular chaperone and calcium binding activities in vitro, whereas its physiological significance remains controversial. Recently, we have reported that P5 localizes not only in the ER but also in mitochondria, although it remains unclear so far about its physiological significance(s) of its dual localization. Here we report that H(2)O(2)- or rotenone-induced cell death is suppressed in MTS-P5 cells, which stably express P5 in mitochondria. H(2)O(2)-induced cell death in Saos-2 cells occurred, in large part, through caspase-independent and poly(ADP-ribose) polymerase (PARP)-dependent manner. In MTS-P5 cells challenged with H(2)O(2) treatment, PARP was still activated, whereas release of cytochrome c or apoptosis-inducing factor and intramitochondrial superoxide generation were suppressed. We also found that mitochondrial P5 was in close contact with citrate synthase and maintained large parts of its activity under H(2)O(2) exposure. These results suggest that mitochondrial P5 may upregulate tricarboxylic acid cycle and possibly, other intramitochondrial metabolism.  相似文献   

5.
To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative folding because its depletion delayed disulfide formation in all secretory proteins tested. However, the phenotype was surprisingly modest suggesting that other family members are able to compensate for PDI depletion, albeit with reduced efficacy. ERp57 also exhibited broad specificity, overlapping with that of PDI, but with preference for glycosylated substrates. Depletion of both PDI and ERp57 revealed that some substrates require both enzymes for optimal folding and, furthermore, led to generalized protein misfolding, impaired export from the ER, and degradation. In contrast, depletion of ERp72 or P5, either alone or in combination with PDI or ERp57 had minimal impact, revealing a narrow substrate specificity for ERp72 and no detectable role for P5 in oxidative protein folding.  相似文献   

6.
7.
The cDNA for Chinese hamster mitochondrial Hsp70 (mHsp70) was cloned and sequenced using a polymerase chain reaction probe based on conserved regions in the Hsp70 family of proteins. The encoded protein consists of 679 amino acids which includes a N-terminal mitochondrial targeting sequence of 46 amino acids. The mHsp70 protein contains several sequence signatures that are characteristics of prokaryotic and eukaryotic organellar Hsp70 homologs. In a phylogenetic tree based on Hsp70 sequences, it branches with the gram-negative proteobacteria, supporting the endosymbiotic origin of mitochondria from this group of prokaryotes. The mHsp70 cDNA was transcribed and translatedin vitroand its import into isolated rat heart mitochondria was examined. The precursor mHsp70 was converted into a mature form of lower molecular mass (≈71 kDa) which became resistant to trypsin digestion. The import of mHsp70 into mitochondria was not observed in the presence of an uncoupler of energy metabolism or when the N-terminal presequence was lacking. The cDNA for mHsp70 was expressed inEscherichia coliand a polyclonal antibody to the purified recombinant protein was raised. The antibody shows no cross-reactivity to recombinant cytosolic Hsp70 protein and in 2-D gel blots it reacted specifically with the mHsp70 protein only. In immunofluorescence experiments, the antibody predominantly labeled mitochondria, and the observed labeling pattern was identical to that seen with a monoclonal antibody to the mitochondrial Hsp60 chaperonin. The affinity-purified antibody to mHsp70 was also employed to examine the subcellular distribution of the protein by cryoelectron microscopy and the immunogold-labeling technique. In these experiments, in addition to mitochondria, labeling with mitochondrial Hsp70 antibody was also observed on the plasma membrane and in unidentified cytoplasmic vesicles and granules. These studies raise the possibility that similar to the Hsp60 chaperonin and a number of other mitochondrial proteins, mHsp70 may have an extramitochondrial role.  相似文献   

8.
Specific antibodies to a protein designated P1 (Mr approximately equal to 63,000), which is specifically altered in mutants resistant to the microtubule inhibitor podophyllotoxin, bind to mitochondria in cells of various vertebrate and invertebrate species (Eur. J. Cell Biol. 44, 278-285 (1987); Can. J. Biochem. Cell Biol. 63, 489-502 (1985)). To investigate the relationship of this protein to mitochondria, rat liver mitochondria have been purified and immunoblot analysis with these provide evidence that the P1 protein is a major component of mitochondria. Two-dimensional gel electrophoretic analysis of mitochondrial proteins from Chinese hamster ovary (CHO) cells also show the P1 protein to be a major mitochondrial component. Subfractionation of rat liver mitochondria into various compartments indicates that the P1 protein is mainly associated with the matrix fraction. Effect of treatment of CHO cells with mitochondrial inhibitors on the synthesis of P1 protein was also investigated. Treatment with the K+ ionophores nonactin and valinomycin, which abolish mitochondrial membrane potential, inhibited synthesis of the mature forms of the P1 protein as well as a number of other mitochondrial proteins, as seen by two-dimensional gel electrophoresis of labeled polypeptides. Treatment of the podophyllotoxin-resistant mutant of CHO cells with the above inhibitors affected both the wild-type and the mutant forms of the P1 protein in a similar manner. Concomitant with the disappearance of the above proteins, new basic proteins of higher molecular masses, related to the P1 and other proteins by peptide analysis, were observed in the drug-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.  相似文献   

10.
Mammalian mitochondrial DNA end-binding activity is nearly indistinguishable from that of nuclear Ku. This observation led to the hypothesis that mitochondrial DNA end-binding activity is in part dependent upon Ku80 gene expression. To test this hypothesis, we assayed for Ku activity in mitochondrial extracts prepared from the xrs-5 hamster cell line that lacks Ku80 mRNA expression. Mitochondrial protein extracts prepared from this cell line lacked the DNA end-binding activity found in similar extracts prepared from wild-type cells. Azacytidine-reverted xrs-5 cells that acquired nuclear DNA end-binding activity also acquired mitochondrial DNA end-binding activity. Western blot analysis of human mitochondrial protein extracts using a monoclonal antibody specific for an N-terminal epitope of Ku80 identified a protein with an apparent molecular weight of 68 kDa. This mitochondrial protein was not detected by a monoclonal antibody specific for an epitope at the C-terminal end of Ku80. Consistently, while both the N- and C-terminal Ku80 monoclonal antibodies supershifted the nuclear DNA end-binding complex on an electrophoretic mobility shift assay, only the N-terminal monoclonal antibody supershifted the mitochondrial DNA end-binding complex. To confirm that the 68 kDa Ku protein was not a consequence of nuclear protein contamination of mitochondrial preparations, highly purified intact nuclei and mitochondria were treated with proteinase K which traverses the pores of intact nuclei but gains limited access into intact mitochondria. Ku80 in purified intact nuclei was sensitive to treatment with this protease, while the 68 kDa Ku protein characteristic of purified intact mitochondria was resistant. Further, immunocytochemical analysis revealed the co-localization of the N-terminal specific Ku80 monoclonal antibody with a mitochondrial-targeted green fluorescence protein. Mitochondrial localization of the C-terminal Ku80 monoclonal antibody was not observed. These data are consistent with the hypothesis that a C-terminally truncated form of Ku80 is localized in mammalian mitochondria where it functions in a DNA end-binding activity.  相似文献   

11.
Ru Y  Yin L  Sun H  Yin S  Pan Q  Wei H  Wu L  Liu S 《Analytical biochemistry》2012,421(1):219-226
Mitochondrial preparation is a key technique in the study of mitochondria. Growing evidence has demonstrated that mitochondrial proteins are tissue or cell type dependent. Locating the proteins in the global presence of mitochondrial membranes is a primary consideration in adopting antibodies for affinity enrichment of mitochondria on a micro scale. Two proteins located on the outer membrane of mitochondria, cytochrome b5 type B (CYB5B) and synaptojanin-2-binding protein (SYNJ2BP), were selected as candidates based on a survey of databases and the literature. The polyclonal antibodies against the truncated CYB5B and SYNJ2BP exhibited specific recognition to mitochondria and wider sensitivity to several tested mouse tissues and cell lines, whereas the antibody 22-kDa translocase of the outer mitochondrial membrane (TOM22) nearly missed detection of mitochondria in the liver and responded minimally to mitochondria from H9C2 and L-02 cells. Through the affinity enrichment for cellular mitochondria using magnetic beads coated with anti-CYB5B or anti-SYNJ2BP, we found that the anti-CYB5B beads could enrich mitochondria more efficiently even on a scale of 10,000 cultured cells. For the integrity and protein components, the enriched mitochondria on anti-CYB5B were carefully examined and were accepted in further functional study. We propose that an anti-CYB5B immunomagnetic approach is feasible in the micropreparation of mitochondria from cultured cells.  相似文献   

12.
Seventeen loci encode proteins of the preprotein and amino acid transporter family in Arabidopsis (Arabidopsis thaliana). Some of these genes have arisen from recent duplications and are not in annotated duplicated regions of the Arabidopsis genome. In comparison to a number of other eukaryotic organisms, this family of proteins has greatly expanded in plants, with 24 loci in rice (Oryza sativa). Most of the Arabidopsis and rice genes are orthologous, indicating expansion of this family before monocot and dicot divergence. In vitro protein uptake assays, in vivo green fluorescent protein tagging, and immunological analyses of selected proteins determined either mitochondrial or plastidic localization for 10 and six proteins, respectively. The protein encoded by At5g24650 is targeted to both mitochondria and chloroplasts and, to our knowledge, is the first membrane protein reported to be targeted to mitochondria and chloroplasts. Three genes encoded translocase of the inner mitochondrial membrane (TIM)17-like proteins, three TIM23-like proteins, and three outer envelope protein16-like proteins in Arabidopsis. The identity of Arabidopsis TIM22-like proteins is most likely a protein encoded by At3g10110/At1g18320, based on phylogenetic analysis, subcellular localization, and complementation of a yeast (Saccharomyces cerevisiae) mutant and coexpression analysis. The lack of a preprotein and amino acid transporter domain in some proteins, localization in mitochondria, plastids, or both, variation in gene structure, and the differences in expression profiles indicate that the function of this family has diverged in plants beyond roles in protein translocation.  相似文献   

13.
Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here,we analyzed the role of two previously characterized PRAT protein family members,encoded by At3g49560(HP30) and At5g24650(HP30-2),in planta using a combination of genetic,cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria,whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes,one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit(NDC_1)implicated in a respiratory complex 1-like electron transport chain. Through its association with TIM22,HP30-2 is involved in the uptake of carrier proteins and other,hydrophobic membrane proteins lacking cleavable NH2-terminal presequences,whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.  相似文献   

14.
15.
DNA sequence studies of cytochrome b(5) (Cyt-b) genes from Drosophila melanogaster and Drosophila virilis predict that the Drosophila Cyt-b proteins are extremely hydrophobic and have at least eight potential transmembrane spanning domains. Primary protein sequence analysis also predicts that the Cyt-b proteins have mitochondrial targeting sequences and they contain sites for potential post-translational modification similar to other cytochrome proteins. We report the characterization of the cytochrome b(5) proteins from Drosophila melanogaster and Drosophila virilis. We have used a Drosophila cytochrome b(5) specific antibody to demonstrate that cytochrome b(5) proteins are expressed in muscle-containing tissues in the fly. We also provide evidence that the nuclear encoded cytochrome b(5) protein that contains a mitochondrial targeting sequence is translocated to mitochondria.  相似文献   

16.
The relationship between type I iodothyronine 5'-monodeiodinase (5'-MD) and protein disulphide isomerase (PDI) was investigated by using a synthetic 18-amino acid peptide (LAP475c), which corresponds to the sequence of amino acids at position 373-390 of PDI including its active site, and anti-LAP475c antibody. Western blot analysis revealed that our anti-LAP475c antibody was highly specific for 57K protein in solubilized rat liver microsomal protein (SRLMP) that corresponded to PDI. Anti-LAP475c IgG (1:100 dilution) precipitated 46% of 5'-MD. These data suggest that PDI may play a regulatory role in the 5'-monodeiodination reaction.  相似文献   

17.
Hepatic mitoplasts from 3-methylcholanthrene-treated rats contain cytochrome P-450 which can metabolize polycyclic aromatic hydrocarbons like benzo(a)pyrene. Mitochondrial cytochrome P-450 was partially purified and reconstituted in vitro using adrenodoxin and the adrenodoxin reductase electron transfer system and [3H]benzo(a)pyrene as the substrate. A polyclonal antibody to purified microsomal P-450c (a major 3-methylcholanthrene-inducible form) inhibited the activity of mitochondrial enzyme in a concentration-dependent manner and also reacted with a 54-kDa protein on the immunoblots. A monoclonal antibody having exclusive specificity for P-450c, on the other hand, did not inhibit the aryl hydrocarbon hydroxylase activity of the mitochondrial enzyme and showed no detectable cross-reaction with the 54-kDa mitochondrial protein. Similarly, two-dimensional analysis and immunodetection using the polyclonal antibody showed distinct molecular properties of the mitochondrial enzyme different from the similarly induced microsomal P-450c with respect to the isoelectric pH. In vitro translation of free polysomes from 3-methylcholanthrene-induced liver, transport of precursor proteins by isolated mitochondria in vitro, and immunoprecipitation with the polyclonal antibody showed the presence of a 57-kDa putative precursor which is transported and processed into mature 54-kDa species. These results present evidence for the true intramitochondrial location of the P-450c-antibody reactive isoform detected in 3-methylcholanthrene-induced rat liver mitochondria.  相似文献   

18.
Red and white muscles are faced with very different energetic demands. However, it is unclear whether relative mitochondrial protein expression is different between muscle types. Mitochondria from red and white porcine skeletal muscle were isolated with a Percoll gradient. Differences in protein composition were determined using blue native (BN)-PAGE, two-dimensional differential in gel electrophoresis (2D DIGE), optical spectroscopy, and isobaric tag for relative and absolute quantitation (iTRAQ). Complex IV and V activities were compared using BN-PAGE in-gel activity assays, and maximal mitochondrial respiration rates were assessed using pyruvate (P) + malate (M), glutamate (G) + M, and palmitoyl-carnitine (PC) + M. Without the Percoll step, major cytosolic protein contamination was noted for white mitochondria. Upon removal of contamination, very few protein differences were observed between red and white mitochondria. BN-PAGE showed no differences in the subunit composition of Complexes I-V or the activities of Complexes IV and V. iTRAQ analysis detected 358 mitochondrial proteins, 69 statistically different. Physiological significance may be lower: at a 25% difference, 48 proteins were detected; at 50%, 14 proteins were detected; and 3 proteins were detected at a 100%. Thus any changes could be argued to be physiologically modest. One area of difference was fat metabolism where four β-oxidation enzymes were ~25% higher in red mitochondria. This was correlated with a 40% higher rate of PC+M oxidation in red mitochondria compared with white mitochondria with no differences in P+M and G+M oxidation. These data suggest that metabolic demand differences between red and white muscle fibers are primarily matched by the number of mitochondria and not by significant alterations in the mitochondria themselves.  相似文献   

19.
20.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号