首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the literature and own data, consecutive stages of development of the central nervous system (CNS) in the lower Bilateria are considered-separation of brain from parenchyma, formation of its own envelopes, and development of the trunk and orthogonal nervous system. Results of histochemical (cholinergic and catecholaminergic) and immunocytochemical (5-HT-and FMRF-amid immunoreactive) studies of the CNS in representatives of Acoela, free living and parasitizing Platyhelminthes and Rotifera are considered. The comparative analysis makes it possible to describe development and complication of the initially primitive Bilateria pleux nervous system. A special attention will be paid to the Acoela phylogenesis, based on molecular-biology data and results of study of their nervous system.  相似文献   

2.
Evolution of the nervous system in Paraphanostoma (Acoela)   总被引:2,自引:0,他引:2  
Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W. & Jondelius, U. (2004). Evolution of the nervous system in Paraphanostoma (Acoela). — Zoologica Scripta, 33 , 71–88.
According to recent molecular studies, the Acoela are the earliest extant bilaterian group. Their nervous system displays a striking variety of patterns. The aim of the present investigation was to study the variability of the nervous system in a monophyletic group of the Acoela. Six species of Paraphanostoma were chosen for the study. Using immunocytochemical methods and confocal scanning laser microscopy, the immunoreactive patterns of serotonin (5-HT) and the neuropeptide GYIRFamide were described in detail. The study has demonstrated that the brains in Paraphanostoma species, although diverse in detail, still follow the same general pattern. 18S rDNA sequences were used to generate a hypothesis of the phylogeny within the group. Characters of the nervous system revealed in this study were coded and analysed together with 18S rDNA data. Several synapomorphies in the nervous system characters were identified. However, numerous parallelisms in the nervous system evolution have occurred. Data obtained demonstrate that the genus Paraphanostoma is closely related to Childia and should belong to the same family, Childiidae.  相似文献   

3.
Philocelis cellata has a strengthened bursa mouthpiece which is arranged in front of the male copulatory organ. The main components of the bursa mouthpiece are numerous ring-shaped bursa mouthpiece cells whose central parts contain strengthened elements forming a tube around the sperm duct. Each of the peripheral areas of the bursa mouthpiece cells is separated by similarly ring-shaped gap cells. The end of the bursa mouthpiece towards the bursa is formed by a so-called sorting apparatus which consists of different cells; opposite the bursa the sperm duct ends in a globe-shaped sperm vestibule. The bursa mouthpiece is differentiated successively, beginning at the distal part at the bursa and proceeding proximally.  相似文献   

4.
In order to broaden the information about the organisation of the nervous system in taxon Acoela, an immunocytochemical study of an undetermined Acoela from Cape Kartesh, Faerlea glomerata, Avagina incola and Paraphanostoma crassum has been performed. Antibodies to 5-HT and the native flatworm neuropeptide GYIRFamide were used. As in earlier studies, the pattern of 5-HT immunoreactivity revealed an anterior structure composed mainly of commissures, a so-called commissural brain. Three types of brain shapes were observed. No regular orthogon was visualised. GYIRFamide immunoreactive cell clusters were observed peripherally to the 5-HT immunoreactive commissural brain. Staining with anti-GYIRFamide revealed more nerve processes than did staining with anti-FMRFamide. As no synapomorphies were found in the organisation of the nervous system of the Acoela and that of the Platyhelminthes, the results support the view that the Acoela is not a member of the Platyhelminthes.  相似文献   

5.
By means of the method for revealing cholinesterases the alterations in the nervous system of Convoluta convoluta after mechanical lesion were studied. After a transversal transection of the animal into two pieces the anterior part of the body acquired the normal form within 3-4 days; the nervous system underwent inconsiderable transformations associated with a formation of a plexus in the injured area. The posterior parts of the body regenerated slowly. During the first days disintegration of the resting parts of the nervous system was observed. Later on the diffuse cholinesterase activity suggesting the beginning of the brain formation was manifested in the wound field. Plexus strands "grow" in the caudal direction from the brain in parallel with its development. Within three weeks the nervous system of the animals which had restored their mouth opening, body shape and normal behaviour consists of the brain and plexus not arranged in nervous trunks. The reaction of the nervous system to the ablation of a part of the brain and to a continuous mechanical injury were studied. The data obtained show a high morphological lability of the nervous system of Convoluta convoluta, its ability to radical structural rearrangements.  相似文献   

6.
The organization of the nervous system of Archilopsis unipunctata Promonotus schultzei and Paramonotus hamatus (Monocelididae, Proseriata) and Stenostomum leucops (Catenulida) and Microstomum lineare (Macrostomida) was studied by immunocytochemistry, using antibodies to the authentic flatworm neuropeptide F (NPF) (Moniezia expansa). The organization of the nervous system of the Monocelididae was compared to that of the nervous system of Bothriomolus balticus (Otoplanidae), a previously studied species of another family of the Proseriata. The results show that the main nerve cords (MCs), independent of lateral or ventral position in the Monocelididae and the Otoplanidae, correspond to each other. The study also confirms the status of the lateral cords as main cords (MCs) in S. leucops and M. lineare. Common for MCs in the members of the investigated taxa are the following features: MCs consist of many fibres, originate from the brain and are adjoined to 5-HT-positive neurons. In Monocelididae and Otoplanidae, the MCs additionally have the same type of contact to the pharyngeal nervous system. Also common for both proseriate families is the organization of the two lateral nerve cords, with weaker connections to the brain, and the pair of dorsal cords running above the brain. The organization of the minor cords differs. The Monocelididae have a pair of thin ventral cords forming a mirror image of the dorsal pair. Furthermore, an unpaired ventral medial cord connecting medial commissural cells was observed in P. schultzei. Marginal nerve cords, observed in Otoplanidae, are absent in Monocelididae. All minor nerve cords are closely connected to the peripheral nerve plexus. The postulated trends of condensation of plexal fibres to cords and/or the flexibility of the peripheral nerve plexus are discussed. In addition, the immunoreactivity (IR) pattern of NPF was compared to the IR patterns of the neuropeptide RFamide and the indoleamine, 5-HT (serotonin). Significant differences between the distribution of IR to NPF and to 5-HT occur. 5-HT-IR dominates in the submuscular and subepidermal plexuses. In the stomatogastric plexus of M. lineare, only peptidergic IR is observed in the intestinal nerve net. The distribution of NPF-IR in fibres and cells of the intestinal wall in M. lineare indicates a regulatory function for this peptide in the gut, while a relationship with ciliary and muscular locomotion is suggested for the 5-HT-IR occurring in the subepidermal and submuscular nerve, plexuses. In M. lineare, the study revealed an NPF- and RFamide-positive cell pair, marking the finished development of new zooids. This finding indicates that constancy of these cells is maintained in this asexually reproducing and regenerating species.  相似文献   

7.
The fine structure of the nerve cells and the neuropile in the brain of acoels and the peripheral nervous system and the synapses have been studied. On the basis of the vesicle content, four nerve cell types are distinguished. The presumptive glial cell is also visualized. The synapses appear to be of the following four types: asymmetrical, ribbon, symmetrical and electrical. The peripheral nervous system consists of a subepithelial and a submuscular plexus; they present asymmetrical and symmetrical synapses. In the light of these results, the nervous system of acoels should no longer be considered as primitive.  相似文献   

8.
 In order to solve the question whether Plathelminthes belonging to the taxon Acoela have a brain and an orthogon of the common flatworm type, an immunocytochemical study of the pattern of serotonin (5-HT) in four species was performed. In all species the 5-HT immunoreactivity revealed no ganglionic cell mass typical for other Plathelminthes, only a symmetrical brain-like structure composed of commissural fibres associated with a few cell bodies. 5-HT immunoreactivity was detected in three to five pairs of longitudinal nerve cords, connected by an irregular network of immunoreactive transverse fibres. No regular orthogon was visualised. All the surface sensilla were strongly immunoreactive. The unique commissural brain and cordal nervous system found in Acoela support the view of a deep gap lying between Acoela and other Plathelminthes. Accepted: 15 December 1997  相似文献   

9.
The ventral musculature of Convolutriloba longifissura (Acoela) has been studied using electron microscopy and fluorescently labeled whole mounts to demonstrate filamentous actin. Attention was directed to the reorganization and renewal of musculature during asexual reproduction and the adaptation of muscle sets for special predatory behavior. Three ventral subepidermal muscle layers could be distinguished in adult C. longifissura: (1) outer circular muscles that encircle the body, (2) intermediate modified longitudinal muscles with concentric pattern around the mouth and V-shaped orientation in the posterior part of the animal, and (3) inner special pore muscles with radial alignment fanning out from the mouth. Additionally, a few very fragile muscles were found at the anterior margin of the animal. The anterior ventral muscle system built a funnel with the mouth opening as organizing center. The special radial muscles and the antagonistically concentric muscles are perfectly adapted to catch prey in such a way that the funnel is put over the prey to press it through the mouth into the digestive syncytium. Convolutriloba longifissura shows a unique way of asexual reproduction by a two-step fission which results in three individuals. Immediately after separation from the mother animal, daughter individuals are missing the concentric and the radial muscle sets around the mouth completely, but within 30 h these sets are renewed for the most part. Two to three days after separation, the mouth opening is visible and the animals move for capturing prey. The peculiar course of longitudinal muscles in C. longifissura with concentric rings anteriorly and a V-shape muscle layer posteriorly shows that the pattern of body-wall musculature in such basal Plathelminthes as the Acoela may be highly modified from the original pattern of longitudinal and circular muscles.  相似文献   

10.
“Emergence” is an idea that has received much attention in consciousness literature, but it is difficult to find characterizations of that concept which are both specific and useful. I will precisely define and characterize a type of epistemic (“weak”) emergence and show that it is a property of some neural circuits throughout the CNS, on micro-, meso- and macroscopic levels. I will argue that possession of this property can result in profoundly altered neural dynamics on multiple levels in cortex and other systems. I will first describe emergent neural entities (ENEs) abstractly. I will then show how ENEs function specifically and concretely, and demonstrate some implications of this type of emergence for the CNS.  相似文献   

11.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

12.
Insulin and the central nervous system   总被引:1,自引:0,他引:1  
Data from literature concerning the neurobiological, electrical and metabolic effects of insulin are reviewed. Emphasis is laid on insulin distribution in the CNS, on distribution and localization of the insulin brain receptors, on insulin transport through the hemato-encephalic barrier. Data concerning insulin effect on the electrical activity of various CNS neurons, particularly, on those of the feeding and satiety centres. The effects of insulin on the brain metabolism are discussed. Insulin shares many properties with the nerve growth factor and may be considered as specific neurotransmitter and neuromodulator.  相似文献   

13.
Glycogen in the central nervous system   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
K. Lundin 《Zoomorphology》1997,117(2):81-92
 The fine morphology of epidermal ciliary structures in four species of the Nemertodermatida and four species of the Acoela was studied, with emphasis on Meara stichopi (Nemertodermatida). The cilium of M. stichopi has a distal shelf and is proximally separated from the basal body by a cup-shaped structure. The bottom of the cup consists of a bilayered dense plate, or basal plate. The basal body consists of peripheral microtubule doublets continuous with those of the cilium. In the upper part of the basal body, the doublets are set at an angle and are anchored to the enclosing cell membrane by Y-shaped structures. The lower part of the basal body tapers eventually. The striated main rootlet arises on the anterior face of the basal body, initially like a flattened strap, and continues along the basal body shaped as a tube which further down becomes solid. The hour-glass-shaped posterior rootlet arises on the posterior face of the basal body. Contrary to the main rootlet, the striations in the proximal part of the posterior rootlet run parallel to the microtubule doublets of the basal body. A pair of microtubule bundles lead from the posterior rootlet to the two main rootlets in the hind ciliary row, and follow these to their lower tip. In the other species of the Nemertodermatida studied, the structure of the ciliary basal body and the ciliary rootlets is similar to that of M. stichopi. Structural differences in the species of the Acoela are that the lowermost end of the basal body is narrow and bent forwards, the proximal part of the main rootlet is trough-shaped, the main rootlet is accompanied by a pair of lateral rootlets and the posterior rootlet with associated microtubule bundles is thin. The epidermal ciliary structures in species of the Nemertodermatida and Acoela have a number of shared characters which are unique within the Plathelminthes. However, almost all of these characters are found in Xenoturbella bocki (Xenoturbellida), and some even in species of other ”phyla” of the ”lower” Metazoa. Hence, these characters cannot be considered apomorphic for the Acoelomorpha. A character seemingly present only in species of the Nemertodermatida and Acoela is the bilayered dense plate. This feature might represent an autapomorphic character state for the Acoelomorpha. Accepted: 7 March 1997  相似文献   

16.
With the convergence of science from the fields of neurobiology and immunology, many exciting and challenging surprises have emerged regarding cytokines, neuroendocrine hormones, neuropeptides, excitatory amino acids, and their receptors. For some time neurobiologists have known that subsets of neural cells had different receptors for the same ligand. Those subsets of cells could be as different as neurons and astrocytes and as closely related as astrocytes from different lineages or anatomical areas. The neurobiological puzzle has been to determine the functional meaning of these differences. Immunologists in contrast have long understood the clear cut differences between T and B lymphocytes or T helper/inducer and T cytotoxic/suppressor cells and their response to cytokines. However, it is only very recently that they have discovered preferential use by these cells of different receptors for an identical cytokine ligand. Indeed, identical cytokines in the central nervous system and immune response may induce their pleiotropic responses by utilizing different receptors in these two systems. Immunologic paradigms may help neurobiologists predict the existence of subsets of neural cells and their function. Likewise, neurobiology may enable immunologists to predict roles for receptors in gene families as well as the existence of as yet unidentified receptors.  相似文献   

17.
Over the past 40 years our understanding of the organization of cell membranes has changed dramatically. Membranes are no longer viewed as a homogenous sea of phospholipids studded with randomly positioned islands of proteins. Our current view of the membrane involves the formation of small lipid clusters, comprised mainly of cholesterol and sphingolipids, known as membrane rafts. These lipid clusters apparently include and exclude specific proteins leading to the hypothesis that these domains (1) regulate cellular polarity and compartmentalization through trafficking and sorting, (2) provide platforms for cellular signaling and adhesion, and (3) function as cellular gate keepers. Tremendous controversy surrounds the concept of membrane rafts primarily because these small, highly dynamic entities are too small to be observed with traditional microscopic methods and the most utilized approach for raft analysis relies on poorly quantified, inconsistent biochemical extractions. New analytical approaches are being developed and applied to the study of membrane rafts and these techniques provide great promise for furthering our understanding of these enigmatic domains. In this review we will provide a brief summary of the current understanding of membrane rafts, utilizing the CNS myelin literature for illustrative purposes, and present caveats that should be considered when studying these domains.  相似文献   

18.
A variety of morphological, structural, and chemical changes have been described in the central nervous systems of aging humans and animals. Brain size and volume decline during senescence, and the brain atrophy is accompanied by changes in the number, size, and ultrastructural characteristics of nerve and glial cells. Moreover, recent evidence suggests that the ability of central nervous system cells to communicate with one another via the release of neurotransmitter compounds might be impaired in the elderly. Nutritional factors may play important roles in the aging process of the central nervous system by influencing brain neurotransmission, or by accelerating or retarding geriatric changes in central nervous system structure.  相似文献   

19.
The aim of the present review, which highlights some relationships between sex hormones, the CNS and pain, is to provide reference points for discussion on one of the most intriguing aspects of pain pathophysiology: the presence of sex differences in the response threshold to phasic painful stimuli and in the incidence of chronic pain syndromes. The first part of the review deals with sex steroids and their mechanisms of action. In the second part, the connections between sex steroids, the CNS and pain are illustrated to introduce possible areas of discussion in the study of sex differences in experimental and clinical pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号